J. Mater. Sci. Technol. ›› 2021, Vol. 95: 193-202.DOI: 10.1016/j.jmst.2021.04.021
• Research Article • Previous Articles Next Articles
Chaoqun Danga,1, Weitong Lina,1, Fanling Mengb, Hongti Zhangc, Sufeng Fana, Xiaocui Lia, Ke Caoa, Haokun Yanga, Wenzhao Zhoud, Zhengjie Fane, Ji-jung Kaia,f, Yang Lua,d,*()
Received:
2020-12-08
Revised:
2021-03-30
Accepted:
2021-04-02
Published:
2021-12-30
Online:
2021-06-01
Contact:
Yang Lu
About author:
* Department of Mechanical Engineering, City Univer-sity of Hong Kong, Hong Kong, China. E-mail address: yanglu@cityu.edu.hk (Y. Lu).1These authors contributed equally to this work.
Chaoqun Dang, Weitong Lin, Fanling Meng, Hongti Zhang, Sufeng Fan, Xiaocui Li, Ke Cao, Haokun Yang, Wenzhao Zhou, Zhengjie Fan, Ji-jung Kai, Yang Lu. Enhanced tensile ductility of tungsten microwires via high-density dislocations and reduced grain boundaries[J]. J. Mater. Sci. Technol., 2021, 95: 193-202.
Fig. 1. Microstructure characterization of an original cold-drawn W wire. EBSD orientation maps of the (a) longitudinal section and (b) cross section of the cold-drawn W wire. (c) Bright-field two-beam TEM image showing high-density dislocations in the cold-drawn W wire. (d) Higher-magnification image depicting dislocation structures from the rectangular frame in (c).
Fig. 2. Fabrication of W microwires with high-density dislocations and reduced GBs. A wedge-shaped lamella extracted by a microprobe from the cross section of a cold-drawn W wire and characterized by EBSD to indicate GB position and guide the FIB sculpture of W microwires. A typical W microwire and a tensile gripper aligned before testing are presented.
Fig. 3. Side-view TEM images showing GBs inside two representative W microwires (I and II). Microwire I has one HAGB of 35.3° misorientation, suggested by SAED patterns taken from G1 and G2 at the same X and Y tilt angles. Microwire II has one LAGB of 9° misorientation and two HAGBs (HAGB misorientation between G1 and G3 is 39.9°, while HAGB misorientation between G2 and G3 is 40.8°), suggested by SAED patterns taken from G1 + G2 and the SAED pattern taken from G3 at ΔXG3-G1=28.1°, ΔYG3-G1=-28.3° tilting angles.
Fig. 4. Exceptional room-temperature strength-ductility combination achieved in W microwires. Extracted frames show the plastic deformation of microwires (a) I and (b) II, indicating the morphology at the maximum uniform elongation and before ductile fracture. (c) Engineering stress-strain curves of microwires I and II.
Fig. 5. Yield strength versus uniform elongation of W microwires compared with those of cold-drawn W microwires [42], [43], [44], annealed cold-drawn W microwires [43], single-crystal (SC) W microwires [38]. The data from other refractory metallic microwires [38] including niobium (Nb), molybdenum (Mo) and tantalum (Ta) and some existing interconnect metallic nanowires including copper (Cu) [45] and aluminum (Al) [46,47] are also included.
Fig. 6. (a) Bright-field TEM image showing a typical PTP sample. The red rectangle indicates the observation area. (b) A TEM micrograph showing high-density dislocations using a two-beam condition g =$(0~\bar{1}1)$. SAED pattern inset in (b) shows the loading axis is near [110] direction. (c-h) Series of TEM images magnified from the white rectangular zone in (b) showing representative dislocation activities of the W microwire in the corresponding time interval by in situ TEM tensile testing.
Fig. 7. (a) A crack initiates and propagates after necking. (b) A succession of snapshots showing the crack propagation after crack initiation in (a), accompanied by dislocation activities ahead of the crack tip and crack-tip plasticity. The black dotted lines outline the crack, the yellow arrows indicate dislocations ahead of the crack, and the small round circles in (b) indicate the crack embryos.
Fig. 8. in situ TEM tensile testing of a W microwire containing one LAGB and one HAGB. (a) A TEM micrograph showing an overview of all three grains G1, G2, and G3 before tension with the loading axis close along [110]. (b-g) Series of TEM images taken from the white rectangular zone in (a) showing the dislocation activities. The yellow arrows indicate dislocation activities of pre-existing dislocations, and the red arrows indicate the dislocation activities emitted from the GB. (h-j) Successive frames showing dislocation motion and sample deformation in the corresponding time interval.
Fig. 9. Schematic diagram showing the microstructures and deformation mechanisms of the annealed W microwires, deformed W microwires and W microwires developed in this work, respectively. Their mechanical properties (i.e., yield strength versus uniform elongation) are plotted and compared in Fig. 5.
[1] | E. Lassner, W.-D. Schubert, in: Tungsten, Springer 1999, pp. 1-59. |
[2] |
Y. Lee, C. Choi, Y. Jang, E. Kim, B. Ju, N. Min, J. Ahn, Appl. Phys. Lett. 81 (2002) 745-747.
DOI URL |
[3] |
S. Wang, Y. He, X. Fang, J. Zou, Y. Wang, H. Huang, P.M.F.J. Costa, M. Song, B. Huang, C.T. Liu, Adv. Mater. 21 (2009) 2387-2392.
DOI URL |
[4] |
Y.H. Lee, D.H. Kim, C.H. Choi, Y.T. Jang, B.K. Ju, Appl. Phys. Lett. 85 (2004) 5977-5979.
DOI URL |
[5] |
C.L. Chen, K. Arakawa, H. Mori, Nanotechnology 21 (2010) 285304.
DOI PMID |
[6] |
D. Choi, K. Barmak, Electron. Mater. Lett. 13 (2017) 449-456.
DOI URL |
[7] |
D.H. Hubel, Science 125 (1957) 549-550.
PMID |
[8] | M.A. Lebedev, M.A.L. Nicolelis, Physiol.Rev. 97 (2017) 767-837. |
[9] |
P. Gumbsch, J. Riedle, A. Hartmaier, H.F. Fischmeister, Science 282 (1998) 1293-1295.
PMID |
[10] |
S. Bonk, J. Reiser, J. Hoffmann, A. Hoffmann, Int. J. Refract. Met. Hard Mater. 60 (2016) 92-98.
DOI URL |
[11] |
P. Gumbsch, J. Nucl. Mater. 323 (2003) 304-312.
DOI URL |
[12] | C. Ren, Z.Z. Fang, M. Koopman, B. Butler, J. Paramore, S. Middlemas, Int. J. Re-fract. Met. Hard Mater. 75 (2018) 170-183. |
[13] |
J. Riesch, J.-Y. Buffiere, T. Höschen, M. Di Michiel, M. Scheel, C. Linsmeier, J.-H. You, Acta Mater 61 (2013) 7060-7071.
DOI URL |
[14] | J. Riesch, Y. Han, J. Almanstötter, J.W. Coenen, T. Höschen, B. Jasper, P. Zhao, C. Linsmeier, R. Neu, Phys. Scr. 2016 (2016) 14006. |
[15] |
W. Setyawan, R.J. Kurtz, Scr. Mater. 66 (2012) 558-561.
DOI URL |
[16] |
Y.J. Hu, M.R. Fellinger, B.G. Bulter, Y. Wang, K.A. Darling, L.J. Kecskes, D.R. Trin-kle, Z.K. Liu, Acta Mater 141 (2017) 304-316.
DOI URL |
[17] |
D. Caillard, Acta Mater 194 (2020) 249-256.
DOI URL |
[18] |
L. Romaner, C. Ambrosch-Draxl, R. Pippan, Phys. Rev. Lett. 104 (2010) 195503.
PMID |
[19] |
X. Li, K. Lu, Nat. Mater. 16 (2017) 700.
DOI URL |
[20] |
V. Nikoli ´ c, J. Riesch, R. Pippan, Mater. Sci. Eng. A 737 (2018) 422-433.
DOI URL |
[21] |
C. Ren, Z.Z. Fang, L. Xu, J.P. Ligda, J.D. Paramore, B.G. Butler, Acta Mater 162 (2019) 202-213.
DOI URL |
[22] |
H.K. Yang, K. Cao, Y. Han, M. Wen, J.M. Guo, Z.L. Tan, J. Lu, Y. Lu, J. Mater. Sci. Technol. 35 (2019) 76-83.
DOI |
[23] |
X. Liu, Y. Liu, B. Jin, Y. Lu, J. Lu, J. Mater. Sci. Technol. 33 (2017) 224-230.
DOI URL |
[24] |
H. Zhang, J. Tersoff, S. Xu, H. Chen, Q. Zhang, K. Zhang, Y. Yang, C.-S. Lee, K.-N. Tu, J. Li, Y. Lu, Sci. Adv. 2 (2016) e1501382.
DOI URL |
[25] |
A. Banerjee, D. Bernoulli, H. Zhang, M.-F. Yuen, J. Liu, J. Dong, F. Ding, J. Lu, M. Dao, W. Zhang, Y. Lu, S. Suresh, Science 360 (2018) 300-302.
DOI PMID |
[26] |
K. Cao, S. Feng, Y. Han, L. Gao, T.H. Ly, Z. Xu, Y. Lu, Nat. Commun. 11 (2020) 284.
DOI PMID |
[27] |
C. Dang, J.-P. Chou, B. Dai, C.-T. Chou, Y. Yang, R. Fan, W. Lin, F. Meng, A. Hu, J. Zhu, J. Han, A.M. Minor, J. Li, Y. Lu, Science 371 (2021) 76-78.
DOI URL |
[28] |
S. Zhao, Q. Zhu, X. An, H. Wei, K. Song, S.X. Mao, J. Wang, J. Mater. Sci. Technol. 53 (2020) 118-125.
DOI URL |
[29] |
S. Li, N. Gao, W. Han, J. Mater. Sci. Technol. 58 (2020) 114-119.
DOI URL |
[30] |
W.T. Lin, D. Chen, C.Q. Dang, P.J. Yu, G. Wang, J.H. Lin, F.L. Meng, T. Yang, Y.L. Zhao, S.F. Liu, J.P. Du, G.M. Yeli, C.T. Liu, Y. Lu, S. Ogata, J.J. Kai, Acta Mater 210 (2021) 116843.
DOI URL |
[31] | D.B. Williams, C.B. Carter, The Transmission Electron Microscope, Springer, Boston, MA, 1996. |
[32] |
J. Pešička, R. Kužel, A. Dronhofer, G. Eggeler, Acta Mater 51 (2003) 4 847-4 862.
DOI URL |
[33] |
T. Malis, S.C. Cheng, R.F. Egerton, J. Electron Microsc. Tech. 8 (1988) 193-200.
PMID |
[34] |
J.R. Stephens, Metall. Mater. Trans. B 1 (1970) 1293-1301.
DOI URL |
[35] |
J. Wang, Y. Wang, W. Cai, J. Li, Z. Zhang, S.X. Mao, Sci. Rep. 8 (2018) 4-11.
DOI URL |
[36] |
J. Wang, Z. Zeng, C.R. Weinberger, Z. Zhang, T. Zhu, S.X. Mao, Nat. Mater. 14 (2015) 594-600.
DOI URL |
[37] | X. Kemin, Z. Yufeng, T. Wenchun, L. Ping, Mater. Today Commun. 24 (2020) 101178. |
[38] |
J.Y. Kim, D. Jang, J.R. Greer, Acta Mater 58 (2010) 2355-2363.
DOI URL |
[39] |
M.-S. Ding, L. Tian, W.-Z. Han, J. Li, E. Ma, Z.-W. Shan, Phys. Rev. Lett. 117 (2016) 215501.
DOI URL |
[40] |
L. Wang, F. Zhao, F.P. Zhao, Y. Cai, Q. An, S.N. Luo, J. Appl. Phys. 115 (2014) 053528.
DOI URL |
[41] |
H. Van Swygenhoven, Science 296 (2002) 66-67.
PMID |
[42] |
D. Terentyev, J. Riesch, S. Lebediev, A. Bakaeva, J.W. Coenen, Int. J. Refract. Met. Hard Mater. 66 (2017) 127-134.
DOI URL |
[43] |
P. Zhao, J. Riesch, T. Höschen, J. Almanstötter, M. Balden, J.W. Coenen, R. Himml, W. Pantleon, U. von Toussaint, R. Neu, Int. J. Refract. Met. Hard Mater. 68 (2017) 29-40.
DOI URL |
[44] |
D. Lee, Metall. Trans. A 6 (1975) 2083-2088.
DOI URL |
[45] |
D. Jang, X. Li, H. Gao, J.R. Greer, Nat. Nanotechnol. 7 (2012) 594-601.
DOI URL |
[46] |
S.H. Li, W.Z. Han, J. Li, E. Ma, Z.W. Shan, Acta Mater 126 (2017) 202-209.
DOI URL |
[47] |
S.H. Kim, H.K. Kim, J.H. Seo, D.M. Whang, J.P. Ahn, J.C. Lee, Acta Mater 160 (2018) 14-21.
DOI URL |
[48] |
B. Devincre, S.G. Roberts, Acta Mater 44 (1996) 2891-2900.
DOI URL |
[49] |
S. Kalácska, J. Ast, P.D. Ispánovity, J. Michler, X. Maeder, Acta Mater 200 (2020) 211-222.
DOI URL |
[50] | R.W. Cahn, P. Haasen, Physical Metallurgy, Elsevier, 1996. |
[51] |
C. Chisholm, H. Bei, M.B. Lowry, J. Oh, S.A. Syed Asif, O.L. Warren, Z.W. Shan, E.P. George, A.M. Minor, Acta Mater 60 (2012) 2258-2264.
DOI URL |
[52] |
D. Kiener, P. Kaufmann, A.M. Minor, Adv. Eng. Mater. 14 (2012) 960-967.
DOI URL |
[53] |
V. Nikolić, J. Riesch, M.J. Pfeifenberger, R. Pippan, Mater. Sci. Eng. A 737 (2018) 434-447.
DOI URL |
[54] |
J.R. Greer, W.C. Oliver, W.D. Nix, Acta Mater 53 (2005) 1821-1830.
DOI URL |
[55] |
W. Liu, Y. Liu, Y. Cheng, L. Chen, L. Yu, X. Yi, H. Duan, Phys. Rev. Lett. 124 (2020) 235501.
DOI URL |
[56] |
S.W. Lee, W.D. Nix, Philos. Mag. 92 (2012) 1238-1260.
DOI URL |
[57] |
D. Kiener, P. Hosemann, S.A. Maloy, A.M. Minor, Nat. Mater. 10 (2011) 608-613.
DOI PMID |
[58] |
J.P. Wharry, K.H. Yano, P.V Patki, Scr. Mater. 162 (2019) 63-67.
DOI URL |
[59] |
K. Lu, Nat. Rev. Mater. 1 (2016) 16019.
DOI URL |
[60] |
S. Wei, Q. Wang, H. Wei, J. Wang, Mater. Res. Lett. 7 (2019) 210-216.
DOI URL |
[61] |
X. Wang, J. Wang, Y. He, C. Wang, L. Zhong, S.X. Mao, Nat. Commun. 11 (2020) 2497.
DOI URL |
[62] |
J. Wang, Z. Zeng, M. Wen, Q. Wang, D. Chen, Y. Zhang, P. Wang, H. Wang, Z. Zhang, S.X. Mao, Sci. Adv. 6 (2020) eaay2792.
DOI URL |
[63] | J. Hirth, J. Lothe, Theory of Dislocations, Wiley, 1982. |
[64] |
B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo, M.X. Huang, Science 357 (2017) 1029-1032.
DOI PMID |
[65] |
L. Liu, Q. Yu, Z. Wang, J. Ell, M.X. Huang, R.O. Ritchie, Science 368 (2020) 1347-1352.
DOI PMID |
[66] |
M. Wang, B.B. He, M.X. Huang, J. Mater. Sci. Technol. 35 (2019) 394-395.
DOI |
[1] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Xiangdong Zha, Yingche Ma, Kui Liu. Microstructure evolution and stress rupture properties of K4750 alloys with various B contents during long-term aging [J]. J. Mater. Sci. Technol., 2021, 73(0): 108-115. |
[2] | Yujie Cui, Kenta Aoyagi, Huakang Bian, Yuichiro Hayasaka, Akihiko Chiba. Effects of the aluminum concentration on twin boundary motion in pre-strained magnesium alloys [J]. J. Mater. Sci. Technol., 2021, 73(0): 116-127. |
[3] | Lulu Li, Irene J. Beyerlein, Weizhong Han. Interface-facilitated stable plasticity in ultra-fine layered FeAl/FeAl2 micro-pillar at high temperature [J]. J. Mater. Sci. Technol., 2021, 73(0): 61-65. |
[4] | Jiayi Zhang, Yan Jin Lee, Hao Wang. Microstructure evaluation of shear bands of microcutting chips in AA6061 alloy under the mechanochemical effect [J]. J. Mater. Sci. Technol., 2021, 91(0): 178-186. |
[5] | Shangcheng Zhou, Yao-Jian Liang, Yichao Zhu, Benpeng Wang, Lu Wang, Yunfei Xue. Ultrashort-time liquid phase sintering of high-performance fine-grain tungsten heavy alloys by laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 90(0): 30-36. |
[6] | Zhonghuai Wu, Liangchi Zhang. Mechanical properties and deformation mechanisms of surface-modified 6H-silicon carbide [J]. J. Mater. Sci. Technol., 2021, 90(0): 58-65. |
[7] | Shuqun Chen, Jinshu Wang, Ronghai Wu, Zheng Wang, Yangzhong Li, Yiwen Lu, Wenyuan Zhou, Peng Hu, Hongyi Li. Insights into the nucleation, grain growth and phase transformation behaviours of sputtered metastable β-W films [J]. J. Mater. Sci. Technol., 2021, 90(0): 66-75. |
[8] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[9] | Xu Lu, Dong Wang. Effect of hydrogen on deformation behavior of Alloy 725 revealed by in-situ bi-crystalline micropillar compression test [J]. J. Mater. Sci. Technol., 2021, 67(0): 243-253. |
[10] | Jin-Yu Zhang, Fu-Zhi Dai, Zhi-Peng Sun, Wen-Zheng Zhang. Structures and energetics of semicoherent interfaces of precipitates in hcp/bcc systems: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2021, 67(0): 50-60. |
[11] | Shixing Huang, Qinyang Zhao, Yongqing Zhao, Cheng Lin, Cong Wu, Weiju Jia, Chengliang Mao, Vincent Ji. Toughening effects of Mo and Nb addition on impact toughness and crack resistance of titanium alloys [J]. J. Mater. Sci. Technol., 2021, 79(0): 147-164. |
[12] | Shuang Zhang, Fei Wang, Ping Huang. Enhanced Hall-Petch strengthening in graphene/Cu nanocomposites [J]. J. Mater. Sci. Technol., 2021, 87(0): 176-183. |
[13] | Kaisheng Ming, Shuimiao Jiang, Xiaoyuan Niu, Bo Li, Xiaofang Bi, Shijian Zheng. High-temperature strength-coercivity balance in a FeCo-based soft magnetic alloy via magnetic nanoprecipitates [J]. J. Mater. Sci. Technol., 2021, 81(0): 36-42. |
[14] | Lili Xiao, Ping Huang, Fei Wang. Inverse grain-size-dependent strain rate sensitivity of face-centered cubic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 86(0): 251-259. |
[15] | Yingbin Chen, Qishan Huang, Qi Zhu, Kexing Song, Yanjun Zhou, Haofei Zhou, Jiangwei Wang. Coordinated grain boundary deformation governed nanograin annihilation in shear cycling [J]. J. Mater. Sci. Technol., 2021, 86(0): 180-191. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||