J. Mater. Sci. Technol. ›› 2021, Vol. 95: 203-212.DOI: 10.1016/j.jmst.2021.03.079
• Research Article • Previous Articles Next Articles
Chandreswar Mahataa, Hassan Algadib, Muhammad Ismaila, Daewoong Kwonc, Sungjun Kima,*()
Received:
2021-02-25
Revised:
2021-03-26
Accepted:
2021-03-30
Published:
2021-12-30
Online:
2021-06-01
Contact:
Sungjun Kim
About author:
* E-mail address: sungjun@dongguk.edu (S. Kim).Chandreswar Mahata, Hassan Algadi, Muhammad Ismail, Daewoong Kwon, Sungjun Kim. Controlled multilevel switching and artificial synapse characteristics in transparent HfAlO-alloy based memristor with embedded TaN nanoparticles[J]. J. Mater. Sci. Technol., 2021, 95: 203-212.
Fig. 2. (a) Cross-sectional HRTEM image of ITO/HfAlO/TaN-NP/HfAlO/ITO RRAM device with magnified HfAlO/TaN-NP/HfAlO region. (b) SEM image of atomic layer deposited TaN-NPs on the HfAlO film. (c) The transmittance spectra of ITO/HfAlO/TaN-NP/HfAlO/ITO RRAM device within the wavelength between 350 and 800 nm.
Fig. 3. (a) Schematic of the XPS sample consists of TaN-nano particles on the atomic layer deposited HfAlO dielectrics. (b) Deconvolution of core level Hf 4f and Ta 4f spectra after background correction. Peaks fitting deconvolution of core-level XPS spectra of (c) Al 2p, (d) N 1 s, and (d) O 1 s as received from the sample.
Fig. 4. Electroforming characteristics of multiple (a) ITO/HfAlO/ITO, and (b) ITO/HfAlO/TaN-NP/HfAlO/ITO RRAM device. Change in current during ramp voltage stress for RRAM device (c) without and (d) with TaN-NPs. Current variation due to constant voltage stress (I-t) of (e) ITO/HfAlO/ITO, and (f) ITO/HfAlO/TaN-NP/HfAlO/ITO RRAM device.
Fig. 5. (a) Bipolar resistive switching characteristics of ITO/HfAlO/TaN-NP/HfAlO/ITO RRAM device shows stable 103 DC cycles. (b) Schematic of resistive switching mechanism of ITO/HfAlO/TaN-NP/HfAlO/ITO RRAM device. (c) Endurance property of RRAM device for 103 DC cycles. (d) Retention characteristics of 10 TaN-NP based RRAM device.
RRAMStructure | OperationMode | FormingVoltage(V) | HRS/LRSratio | Endurance(cycles) | Retention(s) | Icc(A) | Vset(V) | Vreset(V) | Refs. |
---|---|---|---|---|---|---|---|---|---|
TiO2-x/Pt-NCs/TiO2-y | Bipolar | NA | 102 | NA | 105 | free | 3.0 | -3.0 | [ |
SiO2/Cu-NPs/SiO2 | Bipolar | 0.6 | 103 | 2000 | NA | 10-3 | 0.6 | -0.3 | [ |
Al2O3/Ag-NPs/ZnO | Bipolar | NA | 102 | NA | 104 | 10-4 | 1.0 | 1.5 | [ |
Al2O3/AgNPs/Al2O3 | Bipolar | 3.6 | 106 | 30 | >103 | 10-3 | 2.25 | -0.55 | [ |
HfOx/Au-NP/HfOx | Bipolar | 6 | >10 | NA | 104 | 10-4 | 1.2 | -1.0 | [ |
HfO2/Pt/HfO2 | Bipolar | NA | 102 | NA | NA | 10-4 | 0.75 | 0.6 | [ |
TiOx/Ag-NP/TiOx | Bipolar | NA | 102 | 100 | 104 | free | -0.5 | 0.25 | [ |
HfAlO/TaN-NP/ HfAlO | Bipolar | -5.2 | >10 | >103 | 104 | 10-3 | -0.7 | 1.0 | This work |
Table 1 Comparison of electrical parameters for different tri-layer and NPs based RRAM structures.
RRAMStructure | OperationMode | FormingVoltage(V) | HRS/LRSratio | Endurance(cycles) | Retention(s) | Icc(A) | Vset(V) | Vreset(V) | Refs. |
---|---|---|---|---|---|---|---|---|---|
TiO2-x/Pt-NCs/TiO2-y | Bipolar | NA | 102 | NA | 105 | free | 3.0 | -3.0 | [ |
SiO2/Cu-NPs/SiO2 | Bipolar | 0.6 | 103 | 2000 | NA | 10-3 | 0.6 | -0.3 | [ |
Al2O3/Ag-NPs/ZnO | Bipolar | NA | 102 | NA | 104 | 10-4 | 1.0 | 1.5 | [ |
Al2O3/AgNPs/Al2O3 | Bipolar | 3.6 | 106 | 30 | >103 | 10-3 | 2.25 | -0.55 | [ |
HfOx/Au-NP/HfOx | Bipolar | 6 | >10 | NA | 104 | 10-4 | 1.2 | -1.0 | [ |
HfO2/Pt/HfO2 | Bipolar | NA | 102 | NA | NA | 10-4 | 0.75 | 0.6 | [ |
TiOx/Ag-NP/TiOx | Bipolar | NA | 102 | 100 | 104 | free | -0.5 | 0.25 | [ |
HfAlO/TaN-NP/ HfAlO | Bipolar | -5.2 | >10 | >103 | 104 | 10-3 | -0.7 | 1.0 | This work |
Fig. 6. (a) Multilevel I-V characteristics of ITO/HfAlO/TaN-NP/HfAlO/ITO RRAM device by increasing RESET voltage. (b) Endurance characteristics of multilevel resistance states with VRESET varying from +0.8 V to +1.6 V at current compliance of 1 mA. (c) Retention properties for different resistance states with changing RESET voltage.
Fig. 7. (a) Comparison of forming characteristics under two different current compliance of 200 nA, and 30 µA. (b) Threshold switching behavior of ITO/HfAlO/TaN-NP/HfAlO/ITO RRAM device at current compliance of 400 nA. (c) The schematic diagram for threshold resistive switching mechanism, (d) Relaxation of currents after applying different pulse amplitude. Data have been presented for five consecutive cycles with relaxation at a read voltage of +0.1 V for 1 ms. (e) Comparison of one single cycle for each pulse voltage with curve fitting.
Fig. 8. (a) Recorded EPSC in response to the pulse train of different frequency from 2 Hz to 100 Hz. (b) EPSC amplitude gain with variation of frequency, and in the inset 100 Hz EPSC response has been highlighted.
Fig. 9. (a) Modulation of conductance with increasing stepwise pulse amplitude for potentiation (?0.4 V, ?0.6 V, ?0.8 V, ?1.0 V) and depression (+0.8 V, +1.0 V, +1.2 V, +1.4 V) along with increasing pulse width at each step from 10 µs to 500 µs. (b) Analog switching behavior with an application of identical negative and positive pulse for potentiation and depression. (c) Variation in potentiation and depression conductance under linearly increasing negative and positive pulse.
[1] |
Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y. Li, L. Sun, M. Liu, Adv. Mater. 24 (2012) 1844-1849.
DOI URL |
[2] | R. Waser, M. Aono, Nanosci. Technol. (2009) 158-165. |
[3] | A. Sawa, Mater. Today 11 (2008) 28-36. |
[4] |
M.J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur, Y.B. Kim, C.J. Kim, D.H. Seo, S. Seo, U.I. Chung, I.K. Yoo, K. Kim, Nat. Mater. 10 (2011) 625-630.
DOI URL |
[5] |
K. Fujiwara, T. Nemoto, M.J. Rozenberg, Y. Nakamura, H. Takagi, Jpn. J. Appl. Phys. 47 (2008) 6266-6271.
DOI URL |
[6] |
S. Chen, M.R. Mahmoodi, Y. Shi, C. Mahata, B. Yuan, X. Liang, C. Wen, F. Hui, D. Akinwande, D.B. Strukov, M. Lanza, Nat. Electron. 3 (2020) 638-645.
DOI URL |
[7] |
A. Kawahara, R. Azuma, Y. Ikeda, K. Kawai, Y. Katoh, Y. Hayakawa, K. Tsuji, S. Yoneda, A. Himeno, K. Shimakawa, T. Takagi, T. Mikawa, K. Aono, IEEE J. Solid State Circuits 48 (2013) 178-185.
DOI URL |
[8] |
Y. Bai, H. Wu, R. Wu, Y. Zhang, N. Deng, Z. Yu, H. Qian, Sci. Rep. 4 (2014) 5780.
DOI URL |
[9] |
Y.J. Huang, S.C. Chao, D.H. Lien, C.Y. Wen, J.H. He, S.C. Lee, Sci. Rep. 6 (2016) 23945.
DOI URL |
[10] |
C. Wang, B. Song, Z. Zeng, AIP Adv. 7 (2017) 125209.
DOI URL |
[11] |
C.Y. Lin, P.H. Chen, T.C. Chang, K.C. Chang, S.D. Zhang, T.M. Tsai, C.H. Pan, M.C. Chen, Y.T. Su, Y.T. Tseng, Y.F. Chang, Y.C. Chen, H.C. Huang, S.M. Sze, Nanoscale 9 (2017) 8586-8590.
DOI URL |
[12] |
T.H. Lee, D.Y. Kang, T.G. Kim, ACS Appl. Mater. Interfaces 10 (2018) 33768-33772.
DOI URL |
[13] |
L. Chen, H.Y. Gou, Q.Q. Sun, P. Zhou, H.L. Lu, P.F. Wang, S.J. Ding, D. Zhang, IEEE Electron Dev. Lett. 32 (2011) 794-796.
DOI URL |
[14] |
L. Gao, Y. Li, Q. Li, Z. Song, F. Ma, Nanotechnology 28 (2017) 215201.
DOI URL |
[15] |
A. Vahl, N. Carstens, T. Strunskus, F. Faupel, A. Hassanien, Sci. Rep. 9 (2019) 17367.
DOI URL |
[16] |
C.Y. Liu, J.J. Huang, C.H. Lai, C.H. Lin, Nanoscale Res. Lett. 8 (2013) 156.
DOI URL |
[17] |
D. Sakellaropoulos, P. Bousoulas, D. Tsoukalas, J. Appl. Phys. 126 (2019) 044501.
DOI URL |
[18] |
Q. Wu, W. Banerjee, J. Cao, Z. Ji, L. Li, M. Liu, Appl. Phys. Lett. 113 (2018) 023105.
DOI URL |
[19] |
X. Yan, L. Zhang, Y. Yang, Z. Zhou, J. Zhao, Y. Zhang, Q. Liu, J. Chen, J. Mater. Chem. C 5 (2017) 11046-11052.
DOI URL |
[20] |
C. Sun, S.M. Lu, F. Jin, W.Q. Mo, J.L. Song, K.F. Dong, J. Electron. Mater. 49 (2020) 530-536.
DOI |
[21] |
L.G. Wang, Z.Y. Cao, X. Qian, L. Zhu, D.P. Cui, A.D. Li, D. Wu, ACS Appl. Mater. Interfaces 9 (2017) 6634-6643.
DOI URL |
[22] |
S.B. Qian, Y.P. Wang, Y. Shao, W.J. Liu, S.J. Ding, Nanoscale Res. Lett. 12 (2017) 138.
DOI URL |
[23] |
X.F. Wang, H. Tian, H.M. Zhao, T.Y. Zhang, W.Q. Mao, Y.C. Qiao, Y. Pang, Y.X. Li, Y. Yang, T.L. Ren, Small 14 (2018) 1702525.
DOI URL |
[24] |
B. Hwang, J.S. Lee, Adv. Electron. Mater. 5 (2019) 1800519.
DOI URL |
[25] |
J. Frascaroli, S. Brivio, E. Covi, S. Spiga, Sci. Rep. 8 (2018) 7178.
DOI PMID |
[26] |
S. Ryu, S.K. Kim, B.J. Choi, J. Electron Mater. 47 (2018) 162-166.
DOI URL |
[27] |
C.H. Cheng, P.C. Chen, Y.H. Wu, F.S. Yeh, A. Chin, IEEE Electron Dev. Lett. 32 (2011) 1749-1751.
DOI URL |
[28] |
D. Cristea, D. Constantin, A. Crisan, C.S. Abreu, J.R. Gomes, N.P. Barradas, E. Alves, C. Moura, F. Vaz, L. Cunha, Vacuum 98 (2013) 63-69.
DOI URL |
[29] |
C. Mahata, S. Kim, Ceram. Int. 47 (2021) 1199-1207.
DOI URL |
[30] | X. Luo, Y. Li, H. Yang, Y. Liang, K. He, W. Sun, H.H. Lin, S. Yao, X. Lu, L. Wan, Z. Feng Cryst. 8 (2018) 248. |
[31] | P.K. Yang, C.H. Ho, D.H. Lien, J.R. Durán Retamal, C.F. Kang, K.M. Chen, T.H. Huang, Y.C. Yu, C.I. Wu, J.H. He Sci. Rep. 5 (2015) 15087. |
[32] | J. Cheng, J. Xu, L.L. Liu, S. Jiang, Materials 9 (2016) 772 Basel. |
[33] |
Z.W. Zheng, C.H. Cheng, K.I. Chou, M. Liu, A. Chin, Appl. Phys. Lett. 101 (2012) 243507.
DOI URL |
[34] |
J.C. Woo, P.S. Kang, C. Il Kim, J. Nanosci. Nanotechnol. 16 (2016) 12835-12838.
DOI URL |
[35] |
R. Suri, C.J. Kirkpatrick, D.J. Lichtenwalner, V. Misra, Appl. Phys. Lett. 96 (2010) 042903.
DOI URL |
[36] |
J. Gao, G. He, M. Liu, J.G. Lv, Z.Q. Sun, C.Y. Zheng, P. Jin, D.Q. Xiao, X.S. Chen, J. Alloy. Compd. 691 (2017) 504-513.
DOI URL |
[37] | S.H. Misha, N. Tamanna, J. Woo, S. Lee, J. Song, J. Park, S. Lim, J. Park, H. Hwang, ECS Solid State Lett. 4 (2015) 25-28. |
[38] |
Z.Q. Wang, H.Y. Xu, L. Zhang, X.H. Li, J.G. Ma, X.T. Zhang, Y.C. Liu, Nanoscale 5 (2013) 4490.
DOI PMID |
[39] | H.A. Bafrani, M. Ebrahimi, S.B. Shouraki, A.Z. Moshfegh, Nanotechnology 9 (2018) 015205. |
[40] |
T.Y. Su, C.H. Huang, Y.C. Shih, T.H. Wang, H. Medina, J.S. Huang, H.S. Tsai, Y.L. Chueh, J. Mater. Chem. C 5 (2017) 6319-6327.
DOI URL |
[41] |
W.J. Zhu, T.P. Ma, S. Zafar, T. Tamagawa, IEEE Electron Dev. Lett. 23 (2002) 597-599.
DOI URL |
[42] | M.B. Gonzalez, J.M. Rafí, O. Beldarrain, M. Zabala, F. Campabadal, Microelec-tron. Eng. 109 (2013) 57-59. |
[43] |
Y. Feng, P. Huang, Z. Zhou, X. Ding, L. Liu, X. Liu, J. Kang, Nanoscale Res. Lett. 14 (2019) 2-6.
DOI URL |
[44] | R. Zhang, H. Huang, Q. Xia, C. Ye, X. Wei, J. Wang, L. Zhang, L.Q. Zhu, Adv. Electron. Mater. 5 (2019) 1-7. |
[45] |
C.-.Y. Huang, C.-.Y. Huang, T.-.L. Tsai, C.-.A. Lin, T.-.Y. Tseng, Appl. Phys. Lett. 104 (2014) 062901.
DOI URL |
[46] |
L.G. Wang, X. Qian, Y.Q. Cao, Z.Y. Cao, G.Y. Fang, A.D. Li, D. Wu, Nanoscale Res. Lett. 10 (2015) 135.
DOI URL |
[47] |
J. Woo, K. Moon, J. Song, S. Lee, M. Kwak, J. Park, H. Hwang, IEEE Electron Device Lett 37 (2016) 994-997.
DOI URL |
[48] |
K.J. Blakeney, C.H. Winter, Chem. Mater. 30 (2018) 1844-1848.
DOI URL |
[49] |
E. Ambrosi, A. Bricalli, M. Laudato, D. Ielmini, Faraday Discuss. 213 (2019) 87-98.
DOI PMID |
[50] |
C. Mahata, C. Lee, Y. An, M.H. Kim, S. Bang, C.S. Kim, J.H. Ryu, S. Kim, H. Kim, B.G. Park, J. Alloy. Compd. 826 (2020) 154434.
DOI URL |
[51] |
F. Zahoor, T.Z. Azni Zulkifli, F.A. Khanday, Nanoscale Res. Lett. 15 (2020) 90.
DOI URL |
[52] | C. Wang, B. Song, Q. Li, Z. Zeng, Appl. Phys. A Mater.Sci. Process. 124 (2018) 1-5. |
[53] |
T. Chang, S.H. Jo, W. Lu, ACS Nano 5 (2011) 7669-7676.
DOI PMID |
[54] |
L. Jiang, F.C. Lv, R. Yang, D.C. Hu, X. Guo, J. Materiomics 5 (2019) 296-302.
DOI |
[55] | B. Sturman, E. Podivilov, M. Gorkunov, Phys. Rev. Lett. 91 (2003) 1-4. |
[56] |
A.S. Sokolov, Y.R. Jeon, S. Kim, B. Ku, C. Choi, NPG Asia Mater. 11 (2019) 5.
DOI URL |
[57] |
Z.Y. Ren, L.Q. Zhu, Y.B. Guo, T.Y. Long, F. Yu, H. Xiao, H.L. Lu, ACS Appl. Mater. Interfaces 12 (2020) 7833-7839.
DOI URL |
[58] |
G. Wu, P. Feng, X. Wan, L. Zhu, Y. Shi, Q. Wan, Sci. Rep. 6 (2016) 23578.
DOI URL |
[59] |
D.T. Wang, Y.W. Dai, J. Xu, L. Chen, Q.Q. Sun, P. Zhou, P.F. Wang, S.J. Ding, D.W. Zhang, IEEE Electron Device Lett. 37 (2016) 878-881.
DOI URL |
[60] |
W.-.J. Chen, C.-.H. Cheng, P.-.E. Lin, Y.-.T. Tseng, T.-.C. Chang, J.-.S. Chen, ACS Appl. Electron Mater. 1 (2019) 2422-2430.
DOI URL |
[61] |
S. Yu, Proc, IEEE 106 (2018) 260-285.
DOI URL |
[62] |
S. Roy, G. Niu, Q. Wang, Y. Wang, Y. Zhang, H. Wu, S. Zhai, P. Shi, S. Song, Z. Song, Z.G. Ye, C. Wenger, T. Schroeder, Y.H. Xie, X. Meng, W. Luo, W. Ren, Mater. Interfaces 12 (2020) 10648-10656.
DOI URL |
[63] |
D. Sakellaropoulos, P. Bousoulas, D. Tsoukalas, J. Appl. Phys. 126 (2019) 044501.
DOI URL |
[64] | J. Wang, L. Li, H. Huyan, X. Pan, S.S. Nonnenmann, Adv. Funct. Mater. 29 (2019) 1-11. |
[1] | Cong Ye, Jiaji Wu, Gang He, Jieqiong Zhang, Tengfei Deng, Pin He, Hao Wang. Physical Mechanism and Performance Factors of Metal Oxide Based Resistive Switching Memory: A Review [J]. J. Mater. Sci. Technol., 2016, 32(1): 1-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||