J. Mater. Sci. Technol. ›› 2021, Vol. 94: 67-76.DOI: 10.1016/j.jmst.2021.04.014
• Research Article • Previous Articles Next Articles
Bing Lenga, Xinglai Zhangb,*(
), Shanshan Chenc,*(
), Jing Lib, Ziqing Sunc, Zongyi Mab, Wenjin Yangb, Bingchun Zhangc, Ke Yangc, Shu Guoa,*(
)
Received:2021-02-04
Revised:2021-03-31
Accepted:2021-04-21
Published:2021-05-19
Online:2021-05-19
Contact:
Xinglai Zhang,Shanshan Chen,Shu Guo
About author:sguo@cmu.edu.cn (S. Guo).Bing Leng, Xinglai Zhang, Shanshan Chen, Jing Li, Ziqing Sun, Zongyi Ma, Wenjin Yang, Bingchun Zhang, Ke Yang, Shu Guo. Highly efficient visible-light photocatalytic degradation and antibacterial activity by GaN:ZnO solid solution nanoparticles[J]. J. Mater. Sci. Technol., 2021, 94: 67-76.
Fig. 1. (a) Crystal structure models of GaN, ZnO and GaN:ZnO solid solution. (b) Stepwise procedure for the fabrication of the GaN:ZnO solid solution NPs. (c) optical and (d, e) SEM images of the NPs with different magnifications. (f) XRD pattern of GaN:ZnO NPs. Reference patterns for wurtzite ZnO (PDF #36-1451), wurtzite GaN (PDF #50-0792) and cubic spinel ZnGa2O4 (PDF #38-1240) are shown as vertical lines.
Fig. 2. (a) TEM image, (b) HRTEM image, (c) corresponding FFT image, (d) STEM image, (e-h) elemental maps and (i) its corresponding EDS profile of GaN:ZnO NPs.
Fig. 3. (a) Full XPS spectrum of GaN:ZnO solid solution NPs. High resolution XPS spectra and peak fits of (b) Ga 2p, (c) Zn 2p, (d) O 1s and (e) N 1s. (f) UV-vis diffuse reflectance absorption spectra, (g) the corresponding band-gap calculations based on Tauc method, and (h) Raman spectra of GaN:ZnO NPs and reference samples of GaN film and ZnO powders.
Fig. 5. Absorption spectrum changes of MB solution (a) without and with (b) 0.5 mg/mL, (c) 1 mg/mL and (d) 2 mg/mL GaN:ZnO NPs under different visible light illumination times. The insets display the decoloration photographs of MB solution during photocatalysis. (e) Photocatalytic MB degradation under visible light at 0.5 mg/mL ZnO and different GaN:ZnO concentrations. (f) The ln(Ct/C0) vs time curves of MB degradation. (g) The rate constants for photocatalytic of MB solution on different GaN:ZnO concentrations. (h) MB solution photocatalytic degradation with GaN:ZnO NPs reused five times. (i) Absorbance at 510 nm of salicylic acid with/without light illumination and under different concentrations of GaN:ZnO NPs. ESR spectra of (j) DMPO-•O2¯, (k) DMPO-•OH, and (l) TEMPO-1O2 adducts from the GaN:ZnO NPs and ZnO powders (as reference) under dark and 20 min visible light illumination.
Fig. 6. Photocatalytic antibacterial performance of GaN:ZnO solid solution NPs with (a) E. coli and (b) S. aureus under visible light (λ > 400 nm) illumination. The concentrations of (c) Zn2+ and (d) Ga3+ ions dissolved in DI water under different GaN:ZnO NPs concentrations and soaking times. Photographs of (e) E. coli and (f) S. aureus colonies on agar plates with different GaN:ZnO NPs concentrations and illumination times.
Fig. 7. SEM images of E. coli cells (a, b) untreated and (c, d) treated with GaN:ZnO NPs under visible light illumination. SEM images of S. aureus cells (e, f) untreated and (g, h) treated with GaN:ZnO NPs under visible light illumination. (i) Schematic representation of the possible mechanism of GaN:ZnO NPs visible light photocatalytic antibacterial activity.
| [1] |
Q. Wu, X.M. Liu, B. Li, L. Tan, Y. Han, Z.Y. Li, Y.Q. Liang, Z.D. Cui, S.L. Zhu, S.L. Wu, Y.F. Zheng, J. Mater. Sci. Technol. 67 (2021) 70-79.
DOI URL |
| [2] |
Y.M. Xiang, Q.L. Zhou, Z.Y. Li, Z.D. Cui, X.M. Liu, Y.Q. Liang, S.L. Zhu, Y.F. Zheng, K.W.K. Yeung, S.L. Wu, J. Mater. Sci. Technol. 57 (2020) 1-11.
DOI URL |
| [3] |
J. Xu, Z.P. Wang, Y.F. Zhu, J. Mater. Sci. Technol. 49 (2020) 133-143.
DOI URL |
| [4] | B.E. Nagay, C. Dini, J.M. Cordeiro, A.P. Ricomini, E.D. de Avila, E.C. Rangel, N.C. da Cruz, V.A.R. Barao, ACS Appl. Mater. Interfaces 11 (2019) 18186-18202. |
| [5] | A.Q. Wang, Z.K. Zheng, H. Wang, Y.W. Chen, C.H. Luo, D.J. Liang, B.W. Hu, R.L. Qiu, K. Yan, Appl. Catal., B 277 (2020) 119171. |
| [6] |
J. Wang, L.Y. Cui, Y.D. Ren, Y.H. Zou, J.L. Ma, C.J. Wang, Z.Y. Zheng, X.B. Chen, R.C. Zeng, Y.F. Zheng, J. Mater. Sci. Technol. 47 (2020) 52-67.
DOI URL |
| [7] |
L.J. Wang, G. Zhou, Y. Tian, L.K. Yan, M.X. Deng, B. Yang, Z.H. Kang, H.Z. Sun, Appl. Catal., B 244 (2019) 262-271.
DOI URL |
| Q.L. Li, S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, D. Li, P.J.J. Alvarez, Water. Res. 42 (2008) 4591-4602. | |
| [8] |
Y.H. Feng, L. Liu, J. Zhang, H. Aslan, M.D. Dong, J. Mater. Chem. B 5 (2017) 8631-8652.
DOI URL |
| [9] |
L. Sun, T. Du, C. Hu, J.N. Chen, J. Lu, Z.C. Lu, H.Y. Han, ACS Sustain. Chem. Eng. 5 (2017) 8693-8701.
DOI URL |
| [10] |
S.E. Hrudey, Water. Res. 43 (2009) 2057-2092.
DOI PMID |
| [11] | C. Zhang, Y.A. Gu, G.X. Teng, L.P. Wang, X.D. Jin, Z.W. Qiang, W.G. Ma, ACS Appl. Mater. Interfaces 12 (2020) 29883-29898. |
| [12] | Z.Z. Zhang, Z.W. Pan, Y.F. Guo, P.K. Wong, X.J. Zhou, R.B. Bai, Appl. Catal., B 261 (2020) 118212. |
| [13] |
F. Deng, Q. Zhang, L.X. Yang, X.B. Luo, A.J. Wang, S.L. Luo, D.D. Dionysiou, Appl. Catal., B 238 (2018) 61-69.
DOI URL |
| [14] |
K.Z. Qi, B. Cheng, J.G. Yu, W.K. Ho, J. Alloy. Compd. 727 (2017) 792-820.
DOI URL |
| [15] | X. Xiao, W.W. Zhu, Q.Y. Liu, H. Yuan, W.W. Li, L.J. Wu, Q. Li, H.Q. Yu, Environ. Sci. Technol. 50 (2016) 11895-11902. |
| [16] |
I. Levchuk, M. Kralova, J.J. Rueda-Marquez, J. Moreno-Andres, S. Gutierrez-Al-faro, P. Dzik, S. Parola, M. Sillanpaa, R. Vahala, M.A. Manzano, Appl. Catal., B 239 (2018) 609-618.
DOI URL |
| [17] | J. Podporska-Carroll, E. Panaitescu, B. Quilty, L.L. Wang, L. Menon, S.C. Pillai, Appl. Catal., B 176 (2015) 70-75. |
| [18] |
Q.Y. Yi, J.H. Ji, B. Shen, C.C. Dong, J. Liu, J.L. Zhang, M.Y. Xing, Environ. Sci. Technol. 53 (2019) 9725-9733.
DOI URL |
| [19] |
K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi, K. Domen, J. Am. Chem. Soc. 127 (2005) 8286-8287.
DOI URL |
| [20] |
K. Maeda, K. Domen, Chem. Mater. 22 (2010) 612-623.
DOI URL |
| [21] |
K. Lee, Y.G. Lu, C.H. Chuang, J. Ciston, G. Dukovic, J. Mater. Chem. A 4 (2016) 2927-2935.
DOI URL |
| [22] |
K. Maeda, K. Teramura, D.L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature 440 (2006) 295.
DOI URL |
| [23] | J. Li, W.J. Yang, A.M. Wu, X.L. Zhang, T.T. Xu, B.D. Liu, ACS Appl. Mater. Inter-faces 12 (2020) 8583-8591. |
| [24] |
J. Li, B.D. Liu, A.M. Wu, B. Yang, W.J. Yang, F. Liu, X.L. Zhang, V. An, X. Jiang, Inorg. Chem. 57 (2018) 5240-5248.
DOI URL |
| [25] |
J. Li, B.D. Liu, W.J. Yang, Y.J. Cho, X.L. Zhang, B. Dierre, T. Sekiguchi, A.M. Wu, X. Jiang, Nanoscale 8 (2016) 3694-3703.
DOI URL |
| [26] |
K. Lee, B.M. Tienes, M.B. Wilker, K.J. Schnitzenbaumer, G. Dukovic, Nano Lett 12 (2012) 3268-3272.
DOI URL |
| [27] |
A.M. Wu, J. Li, B.D. Liu, W.J. Yang, Y.A. Jiang, L.S. Liu, X.L. Zhang, C.M. Xiong, X. Jiang, Dalton Trans 46 (2017) 2643-2652.
DOI URL |
| [28] | B. Adeli, F. Taghipour, J ECS, Solid State Sci. Technol. 2 (2013) Q118-Q126. |
| [29] | B. Marselli, J. Garcia-Gomez, P.A. Michaud, M.A. Rodrigo, C. Comninellis, J. Elec-trochem. Soc. 150 (2003) D79-D83. |
| [30] |
J.P. Wang, P. Yang, Z.Y. Wang, B.B. Huang, Y. Dai, J. Alloys Compd. 652 (2015) 205-212.
DOI URL |
| [31] |
Y.L. Hu, S.H. Ou, J.L. Huang, H.Y. Ji, S.W. Xiang, Y.Q. Zhu, Z.B. Chen, C. Gong, L. Sun, J.Q. Lian, D.Y. Sun, Y.S. Fu, T.M. Ma, Inorg. Chem. 57 (2018) 9412-9424.
DOI URL |
| [32] | F. Romo-Garcia, H.J. Higuera-Valenzuela, D. Cabrera-German, D. Berman-Men-doza, A. Ramos-Carrazco, O.E. Contreras, R. Garcia-Gutierrez, Opt. Mater. Ex-press 9 (2019) 4187-4193. |
| [33] |
X.D. Li, Q.H. Zhang, H.Z. Wang, Y.G. Li, Appl. Surf. Sci. 358 (2015) 57-62.
DOI URL |
| [34] |
D. Wang, M.L. Zhang, H.J. Zhuang, X. Chen, X.Y. Wang, X.J. Zheng, J.H. Yang, Appl. Surf. Sci. 396 (2017) 888-896.
DOI URL |
| [35] | X.L. Zhang, H.W. Wang, J. Zhang, J.X Li, Z.Y. Ma, J. Li, B. Leng, P.J. Niu, B.D. Liu, Nano Energy 77 (2020) 105119. |
| [36] |
W.D. Song, X.F. Wang, C. Xia, R.P. Wang, L.L. Zhao, D.X. Guo, H. Chen, J.K. Xiao, S.C. Su, S.T. Li, Nano Energy 33 (2017) 272-279.
DOI URL |
| [37] | X.L. Zhang, J. Zhang, B. Leng, J. Li, Z.Y. Ma, W.J. Yang, F. Liu, B.D. Liu, Adv. Mater. Interfaces 6 (2019) 1901365. |
| [38] | W.Q. Han, Z.X. Liu, H.G. Yu, Appl. Phys. Lett. 96 (2010) 183112. |
| [39] | Q.X. Xia, N.M. Shinde, J.M. Yun, T. Zhang, R.S. Mane, S. Mathur, K.H. Kim, Elec-trochim. Acta 271 (2018) 351-360. |
| [40] |
T.F. Zhang, Q.X. Xia, Z.X. Wan, J.M. Yun, Q.M. Wang, K.H. Kim, Chem. Eng. J. 360 (2019) 1310-1319.
DOI |
| [41] |
H. Zhang, L.X. Zhao, F.L. Geng, L.H. Guo, B. Wan, Y. Yang, Appl. Catal., B 180 (2016) 656-662.
DOI URL |
| [42] |
X.M. Luo, N. Xu, J.K. Huang, F. Gao, H.S. Zou, M. Boudsocq, G. Coaker, J. Liu, Plant Physiol 174 (2017) 2501-2514.
DOI URL |
| [43] |
P. Poor, G. Patyi, Z. Takacs, A. Szekeres, N. Bodi, M. Bagyanszki, I. Tari, J. Plant. Res. 132 (2019) 273-283.
DOI URL |
| [44] |
J.L. Liu, Y.H. Wang, J.Z. Ma, Y. Peng, A.Q. Wang, J. Alloys Compd. 783 (2019) 898-918.
DOI URL |
| [45] |
B.Cheng K.Z.Qi, J.G. Yu, W.K. Ho, J. Alloys Compd. 727 (2017) 792-820.
DOI URL |
| [46] |
A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan, D. Mohamad, Nano-Micro Lett. 7 (2015) 219-242.
DOI PMID |
| [47] |
O. Rzhepishevska, B. Ekstrand-Hammarstrom, M. Popp, E. Bjorn, A. Bucht, A. Sjostedt, H. Antti, M. Ramstedt, Antimicrob. Agents Chemother. 55 (2011) 5568-5580.
DOI PMID |
| [48] |
N. Gugala, K. Chatfield-Reed, R.J. Turner, G. Chua, Genes 10 (2019) 34.
DOI URL |
| [49] |
A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan, D. Mohamad, Nano-Micro Lett. 7 (2015) 219-242.
DOI PMID |
| [1] | Mingjun Li, Li Nan, Chunyong Liang, Ziqing Sun, Lei Yang, Ke Yang. Antibacterial behavior and related mechanisms of martensitic Cu-bearing stainless steel evaluated by a mixed infection model of Escherichia coli and Staphylococcus aureus in vitro [J]. J. Mater. Sci. Technol., 2021, 62(0): 139-147. |
| [2] | Jiajun Qiu, Lu Liu, Shi Qian, Wenhao Qian, Xuanyong Liu. Why does nitrogen-doped graphene oxide lose the antibacterial activity? [J]. J. Mater. Sci. Technol., 2021, 62(0): 44-51. |
| [3] | Donglin Han, Yuan Li, Xiangmei Liu, Kelvin Wai Kwok Yeung, Yufeng Zheng, Zhenduo Cui, Yanqin Liang, Zhaoyang Li, Shengli Zhu, Xianbao Wang, Shuilin Wu. Photothermy-strengthened photocatalytic activity of polydopamine-modified metal-organic frameworks for rapid therapy of bacteria-infected wounds [J]. J. Mater. Sci. Technol., 2021, 62(0): 83-95. |
| [4] | Li Liu, Wan Peng, Xiao Zhang, Jiangmei Peng, Pingsheng Liu, Jian Shen. Rational design of phosphonate/quaternary amine block polymer as an high-efficiency antibacterial coating for metallic substrates [J]. J. Mater. Sci. Technol., 2021, 62(0): 96-106. |
| [5] | Jin Liu, Sheng Guo, Hongzhang Wu, Xinlei Zhang, Jun Li, Kun Zhou. Synergetic effects of Bi5+ and oxygen vacancies in Bismuth(V)-rich Bi4O7 nanosheets for enhanced near-infrared light driven photocatalysis [J]. J. Mater. Sci. Technol., 2021, 85(0): 1-10. |
| [6] | Meng Zu, Xiaosong Zhou, Shengsen Zhang, Shangshu Qian, Dong-Sheng Li, Xianhu Liu, Shanqing Zhang. Sustainable engineering of TiO2-based advanced oxidation technologies: From photocatalyst to application devices [J]. J. Mater. Sci. Technol., 2021, 78(0): 202-222. |
| [7] | Mi Wu, Wen Liu, Jinrong Yao, Zhengzhong Shao, Xin Chen. Silk microfibrous mats with long-lasting antimicrobial function [J]. J. Mater. Sci. Technol., 2021, 63(0): 203-209. |
| [8] | Yuxuan Mao, Peng Li, Jiewei Yin, Yanjie Bai, Huan Zhou, Xiao Lin, Huilin Yang, Lei Yang. Starch-based adhesive hydrogel with gel-point viscoelastic behavior and its application in wound sealing and hemostasis [J]. J. Mater. Sci. Technol., 2021, 63(0): 228-235. |
| [9] | Qian Wu, Xiangmei Liu, Bo Li, Lei Tan, Yong Han, Zhaoyang Li, Yanqin Liang, Zhenduo Cui, Shengli Zhu, Shuilin Wu, Yufeng Zheng. Eco-friendly and degradable red phosphorus nanoparticles for rapid microbial sterilization under visible light [J]. J. Mater. Sci. Technol., 2021, 67(0): 70-79. |
| [10] | Xiangang Lin, Xiaojuan Hou, Lixia Cui, Shiqiang Zhao, Hong Bi, Haiwei Du, Yupeng Yuan. Increasing π-electron availability in benzene ring incorporated graphitic carbon nitride for increased photocatalytic hydrogen generation [J]. J. Mater. Sci. Technol., 2021, 65(0): 164-170. |
| [11] | Wei Zhang, Shuyuan Zhang, Hui Liu, Ling Ren, Qiang Wang, Yang Zhang. Effects of surface roughening on antibacterial and osteogenic properties of Ti-Cu alloys with different Cu contents [J]. J. Mater. Sci. Technol., 2021, 88(0): 158-167. |
| [12] | Yang Xue, Jun Chen, Lan Zhang, Yong Han. BSA-lysozyme coated NaCa2HSi3O9 nanorods on titanium for cytocompatibility and antibacterial activity [J]. J. Mater. Sci. Technol., 2021, 88(0): 240-249. |
| [13] | Jingzhi Yang, Hongchang Qian, Junpeng Wang, Pengfei Ju, Yuntian Lou, Guoliang Li, Dawei Zhang. Mechanically durable antibacterial nanocoatings based on zwitterionic copolymers containing dopamine segments [J]. J. Mater. Sci. Technol., 2021, 89(0): 233-241. |
| [14] | Linlin Zhang, Wenxing Peng, YaKun Li, Rui Qin, Dong Yue, Chengjun Ge, Jianjun Liao. Constructing built-in electric field in graphitic carbon nitride hollow nanospheres by co-doping and modified in-situ Ni2P for broad spectrum photocatalytic activity [J]. J. Mater. Sci. Technol., 2021, 90(0): 143-149. |
| [15] | Duo Xu, Tianyu Wang, Zhiyuan Lu, Yuanqi Wang, Bin Sun, Shudan Wang, Qiang Fu, Zhenggang Bi, Shuo Geng. Ti-6Al-4V-5Cu synthesized for antibacterial effect in vitro and in vivo via contact sterilization [J]. J. Mater. Sci. Technol., 2021, 90(0): 133-142. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
