J. Mater. Sci. Technol. ›› 2021, Vol. 93: 33-40.DOI: 10.1016/j.jmst.2021.03.047
• Original article • Previous Articles Next Articles
Peng Wan, Mingming Jiang(), Tong Xu, Yang Liu, Caixia Kan(
)
Received:
2021-02-01
Revised:
2021-03-14
Accepted:
2021-03-16
Published:
2021-12-10
Online:
2021-12-10
Contact:
Mingming Jiang,Caixia Kan
About author:
cxkan@nuaa.edu.cn (C. Kan).Peng Wan, Mingming Jiang, Tong Xu, Yang Liu, Caixia Kan. High-mobility induced high-performance self-powered ultraviolet photodetector based on single ZnO microwire/PEDOT:PSS heterojunction via slight ga-doping[J]. J. Mater. Sci. Technol., 2021, 93: 33-40.
Fig. 1. Morphology and structure of the as-synthesized samples. (a) SEM image of a ZnO MW, illustrating hexagonal cross section. (b) SEM image of a ZnO:Ga MW, illustrating hexagonal cross section. (c) Elemental mapping images of Zn, O, and Ga species acquired from a ZnO:Ga MW. (d) XRD patterns of the as-synthesized samples, containing ZnO and ZnO:Ga MWs. (e) Absorbance spectra of individual ZnO and ZnO:Ga MW. (f) PL spectra of individual ZnO and ZnO:Ga MW. The inset shows the enlarged view of PL spectra in the UV band.
Fig. 2. Photoelectric characterization of the as-prepared UV PDs composed of single ZnO and ZnO:Ga MWs, together with p-PEDOT:PSS polymer serving as hole transporting layer. (a) Schematic architecture of UV PD, involving a single MW and p-PEDOT:PSS polymer. (b) Microscopic image of a representative ZnO:Ga MW/PEDOT:PSS PD, the scale bar: 50 m. (c) Optical image of ZnO:Ga MW/PEDOT:PSS PD. (d) SEM image of a ZnO:Ga MW decorated by PEDOT:PSS polymer. (e) Raman spectrum of PEDOT:PSS polymer. (f) Transmittance spectrum of PEDOT:PSS film. (g) I-V curves of the Ag-PEDOT:PSS-Ag under the dark and light illumination via various incident wavelengths. (h) Logarithmic I-V curves of the ZnO MW/PEDOT:PSS heterostructure device, and ZnO:Ga MW/PEDOT:PSS heterostructured device in darkness and under the UV illumination condition. (i) Iph/Id ratio of the ZnO MW/PEDOT:PSS and ZnO:Ga MW/PEDOT:PSS heterojunction devices, respectively.
Fig. 3. Comparison of photoelectric performances of the as-fabricated single MW-based ZnO MW/PEDOT:PSS PD and ZnO:Ga MW/PEDOT:PSS PD. (a) Logarithmic I-V characteristic curve of the ZnO:Ga MW/PEDOT:PSS PD under various light intensities. (b) Logarithmic I-V characteristic curve of the ZnO MW/PEDOT:PSS PD under various light intensities. (c) Light intensity-dependent photocurrents of the PDs measured at zero bias. (d) The responsivity (R) of ZnO:Ga MW/PEDOT:PSS and ZnO MW/PEDOT:PSS PDs performed under various light intensities, respectively. (e) The detectivity (D*) of ZnO:Ga MW/PEDOT:PSS and ZnO MW/PEDOT:PSS PDs measured under various light intensities, respectively. (f) The enhancement of responsivity (R) and detectivity (D*) of the as-fabricated PDs, respectively.
Fig. 4. (a) The spectral responsivity of ZnO:Ga MW/PEDOT:PSS and ZnO MW/PEDOT:PSS PDs. (b) The spectral detectivity of ZnO:Ga MW/PEDOT:PSS and ZnO MW/PEDOT:PSS PDs. (c) The enhancement of responsivity and detectivity at different wavelength. (d) Ids-Vds curves of the ZnO MW-based FET at different Vg. The inset in top left corner is corresponding Ids-Vg curve at Vds = 1 V. The inset in bottom right corner shows the enlarged view of Ids-Vds curves. (e) Ids-Vds curves of the ZnO:Ga MW-based FET at different Vg. The inset in top left corner is corresponding Ids-Vg curve at Vds = 1 V. The inset in bottom right corner shows the enlarged view of Ids-Vds curves. (f) Energy band diagram of the ZnO MW/PEDOT:PSS heterojunction at zero bias.
ZnO MW | ZnO:Ga MW | |
---|---|---|
Diameter(m) | 10 | 10 |
Channel length(m) | 200 | 200 |
Conductivity(S/cm) | 0.2 | 1.9 |
Mobility(cm2V-1s-1) | 2.22 | 11.92 |
Carrier concentration(cm-3) | 5.63 × 1017 | 9.96 × 1017 |
Table 1. The electrical transport properties of ZnO MW and ZnO:Ga MW.
ZnO MW | ZnO:Ga MW | |
---|---|---|
Diameter(m) | 10 | 10 |
Channel length(m) | 200 | 200 |
Conductivity(S/cm) | 0.2 | 1.9 |
Mobility(cm2V-1s-1) | 2.22 | 11.92 |
Carrier concentration(cm-3) | 5.63 × 1017 | 9.96 × 1017 |
Fig. 5. (a) Photoswitching characteristics via I-t curve of the self-powered ZnO:Ga MW/PEDOT:PSS PD under different light intensity. (b) Photoswitching characteristics via I-t curve of the self-powered ZnO MW/PEDOT:PSS PD under different light intensity. (c) Time response of the ZnO:Ga MW/PEDOT:PSS PD measured at 0 V bias. (d) Time response of the ZnO MW/PEDOT:PSS PD measured at 0 V bias.
photodetector | wavelength(nm) | responsivity [mA/W] | detectivity[Jones] | rise time | decay time | Ref. |
---|---|---|---|---|---|---|
Cl-ZnO/PEDOT:PSS | 365 | 2.33 (0 V) | 1.54 × 1010 | 28 ms | 23 ms | [18] |
ZnO nanowires/Ag | 325 | 1.25 (0 V) | 2.7× 109 | 4.5 ms | 3.5 ms | [46] |
p-GaN/n-ZnMgO | 362 | 196 (0 V) | - | 1.7 ms | 3.3 ms | [49] |
ZnO/CuO/GaN | 365 | 1.44 (0 V) | 5.9× 1010 | 120 ms | 220 ms | [50] |
ZnO/CdS/GaN | 300 | 176 (0 V) | 2.5× 1012 | <0.35 s | <0.35 s | [51] |
n-ZnO/CsPbBr3/p-GaN | 365 | 44.53 (0 V) | 2.03 × 1012 | 160 ms | 150 ms | [52] |
ZnO nanowires/PEDOT: PSS | 325 | 3.5 (0 V) | 7.5× 109 | 5.8 ms | 7.3 ms | [53] |
ZnO MW/PEDOT:PSS | 370 | 35 (0 V) | 3.3× 1010 | 222 μs | 3.84 ms | This work |
ZnO:Ga MW/PEDOT:PSS | 370 | 185 (0 V) | 2.4× 1011 | 212 μs | 387 μs | This work |
Table 2. A comparison between the single MW-based ZnO:Ga (ZnO)/PEDOT:PSS PDs in this work and other previously reported works.
photodetector | wavelength(nm) | responsivity [mA/W] | detectivity[Jones] | rise time | decay time | Ref. |
---|---|---|---|---|---|---|
Cl-ZnO/PEDOT:PSS | 365 | 2.33 (0 V) | 1.54 × 1010 | 28 ms | 23 ms | [18] |
ZnO nanowires/Ag | 325 | 1.25 (0 V) | 2.7× 109 | 4.5 ms | 3.5 ms | [46] |
p-GaN/n-ZnMgO | 362 | 196 (0 V) | - | 1.7 ms | 3.3 ms | [49] |
ZnO/CuO/GaN | 365 | 1.44 (0 V) | 5.9× 1010 | 120 ms | 220 ms | [50] |
ZnO/CdS/GaN | 300 | 176 (0 V) | 2.5× 1012 | <0.35 s | <0.35 s | [51] |
n-ZnO/CsPbBr3/p-GaN | 365 | 44.53 (0 V) | 2.03 × 1012 | 160 ms | 150 ms | [52] |
ZnO nanowires/PEDOT: PSS | 325 | 3.5 (0 V) | 7.5× 109 | 5.8 ms | 7.3 ms | [53] |
ZnO MW/PEDOT:PSS | 370 | 35 (0 V) | 3.3× 1010 | 222 μs | 3.84 ms | This work |
ZnO:Ga MW/PEDOT:PSS | 370 | 185 (0 V) | 2.4× 1011 | 212 μs | 387 μs | This work |
[1] | L. Chen, C. Yang, C. Yan, High-performance uv detectors based on 2d cvd bismuth oxybromide single-crystal nanosheets, J. Mater. Sci. Technol., 48(2020), pp. 100-104. |
[2] | Z. Zhang, Y. Ning, X. Fang, From nanofibers to ordered zno/nio heterojunction arrays for self-powered and transparent uv photodetector, J. Mater. Chem. C, 7(2018), pp. 223-229. |
[3] | Y. Ning, Z. Zhang, F. Teng, X. Fang, Novel transparent and self-powered uv photodetector based on crossed zno nanofiber array homojunction, Small, 14 (13) (2018), p. 1703754. |
[4] | M. Zheng, F. Yang, J. Guo, L. Zhao, X. Jiang, G.Q. Gu, B. Zhang, P. Cui, G. Cheng, Z. Du, Cd (oh) 2@zno nanowires thin-film transistor and uv photodetector with a floating ionic gate tuned by a triboelectric nanogenerator, Nano Energy (2020), p. 104808. |
[5] | A. Aiello, Y. Wu, Z. Mi, P. Bhattacharya, Deep ultraviolet monolayer gan/aln disk-in-nanowire array photodiode on silicon, Appl. Phys. Lett., 116 (6) (2020), p. 061104. |
[6] | H. Wang, H. Chen, L. Li, Y. Wang, L. Su, W. Bian, B. Li, X. Fang, High responsivity and high rejection ratio of self-powered solar-blind ultraviolet photodetector based on pedot: pss/β-ga2o3 organic/inorganic p-n junction, J. Phys. Chem. Lett., 10 (21)(2019), pp. 6850-6856. |
[7] | Y. Xiang, Q. Zhou, Z. Li, Z. Cui, X. Liu, Y. Liang, S. Zhu, Y. Zheng, K.W.K. Yeung, S. Wu, A z-scheme heterojunction of zno/cdots/c3n4 for strengthened photoresponsive bacteria-killing and acceleration of wound healing, J. Mater. Sci. Technol., 57 (2020), pp. 1-11. |
[8] | Z. Li, Z. Li, Z. Shi, X. Fang, Facet-dependent, fast response, and broadband photodetector based on highly stable all-inorganic cscu2i3 single crystal with 1d electronic structure, Adv. Funct. Mater., 30 (28) (2020), p. 2002634. |
[9] | C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D. Aplin, J. Park, X. Bao, Y.-H. Lo, D. Wang, Zno nanowire uv photodetectors with high internal gain, Nano Lett., 7 (4)(2007), pp. 1003-1009. |
[10] | J. Han, M. He, M. Yang, Q. Han, F. Wang, F. Zhong, M. Xu, Q. Li, H. Zhu, C. Shan, W. Hu, X. Chen, X. Wang, J. Gou, Z. Wu, J. Wang, Light-modulated vertical heterojunction phototransistors with distinct logical photocurrents, Light: Sci. Appl., 9 (2020), p.167. |
[11] | J. Zhou, Y. Gu, Y. Hu, W. Mai, P.-H. Yeh, G. Bao, A.K. Sood, D.L. Polla, Z.L. Wang, Gigantic enhancement in response and reset time of zno uv nanosensor by utilizing schottky contact and surface functionalization, Appl. Phys. Lett., 94 (19) (2009), p.191103. |
[12] | J. Kim, J.-H. Yun, C.H. Kim, Y.C. Park, J.Y. Woo, J. Park, J.-H. Lee, J. Yi, C.-S. Han, Zno nanowire-embedded schottky diode for effective uv detection by the barrier reduction effect, Nanotechnology, 21 (11) (2010), p.115205. |
[13] | J. Dai, C. Xu, X. Xu, J. Guo, J. Li, G. Zhu, Y. Lin, Single zno microrod ultraviolet photodetector with high photocurrent gain, ACS Appl. Mater. Interfaces, 5 (19)(2013), pp. 9344-9348. |
[14] | Z. Song, H. Zhou, C. Ye, L. Yang, M. Xue, J. Mei, H. Wang, Surface treatment for schottky barrier photodetector based on au/gazno nanorods/au structure, Mater. Sci. Semicond. Process, 64(2017), pp. 101-108. |
[15] | L. Yang, H. Zhou, M. Xue, Z. Song, H. Wang, A self-powered, visible-blind ultraviolet photodetector based on n-ga: zno nanorods/p-gan heterojunction, Sens. Actuator A-Phys., 267(2017), pp. 76-81. |
[16] | Y. Tu, S. Chen, X. Li, J. Gorbaciova, W.P. Gillin, S. Krause, J. Briscoe, Control of oxygen vacancies in zno nanorods by annealing and their influence on zno/pedot: pss diode behaviour, J. Mater. Chem. C, 6 (7) (2018), pp. 1815-1821. |
[17] | W. Peng, R. Yu, X. Wang, Z. Wang, H. Zou, Y. He, Z.L. Wang, Temperature dependence of pyro-phototronic effect on self-powered zno/perovskite heterostructured photodetectors, Nano Res., 9 (12)(2016), pp. 3695-3704. |
[18] | B.D. Boruah, S.N. Majji, S. Nandi, A. Misra, Doping controlled pyro-phototronic effect in self-powered zinc oxide photodetector for enhancement of photoresponse, Nanoscale, 10 (7)(2018), pp. 3451-3459. |
[19] | D. Yoo, J. Kim, J.H. Kim, Direct synthesis of highly conductive poly (3, 4-ethylenedioxythiophene): poly (4-styrenesulfonate)(pedot: pss) /graphene composites and their applications in energy harvesting systems, Nano Res., 7 (5)(2014), pp. 717-730. |
[20] | Y. Wang, L. Li, H. Wang, L. Su, H. Chen, W. Bian, J. Ma, B. Li, Z. Liu, A. Shen, An ultrahigh responsivity self-powered solar-blind photodetector based on a centimeter-sized β-ga 2 o 3/polyaniline heterojunction, Nanoscale, 12 (3)(2020), pp. 1406-1413. |
[21] | H. Kind, H. Yan, B. Messer, M. Law, P. Yang, Nanowire ultraviolet photodetectors and optical switches, Adv. Mater., 14 (2)(2002), pp. 158-160. |
[22] | M. Belhaj, C. Dridi, R. Yatskiv, J. Grym, The improvement of uv photodetection based on polymer/zno nanorod heterojunctions, Org. Electron., 77 (2020), p.105545. |
[23] | A.K. Rana, M. Kumar, D.-K. Ban, C.-P. Wong, J. Yi, J. Kim, Enhancement in performance of transparent p-nio/n-zno heterojunction ultrafast self-powered photodetector via pyro-phototronic effect, Adv. Electron. Mater., 5 (8) (2019), p.1900438. |
[24] | X. Zhu, Q. Xie, H. Tian, M. Zhang, Z. Gou, S. He, P. Gu, H. Wu, J. Li, D. Yang, High photoresponse sensitivity of lithium-doped zno (lzo) thin films for weak ultraviolet signal photodetector, J. Alloy. Compd., 805(2019), pp. 309-317. |
[25] | H. Mosbacker, Y. Strzhemechny, B. White, P. Smith, D.C. Look, D. Reynolds, C. Litton, L. Brillson, Role of near-surface states in ohmic-schottky conversion of au contacts to zno, Appl. Phys. Lett., 87 (1) (2005), p.012102. |
[26] | G.-D. Yuan, W.-J. Zhang, J.-S. Jie, X. Fan, J.-X. Tang, I. Shafiq, Z.-Z. Ye, C.-S. Lee, S.-T. Lee, Tunable n-type conductivity and transport properties of ga-doped zno nanowire arrays, Adv. Mater., 20 (1)(2008), pp. 168-173. |
[27] | H. Zhou, L. Yang, P. Gui, C.R. Grice, Z. Song, H. Wang, G. Fang, Ga-doped zno nanorod scaffold for high-performance, hole-transport-layer-free, self-powered ch3nh3pbi3 perovskite photodetectors, Sol. Energy Mater. Sol. Cells, 193 (2019), pp. 246-252. |
[28] | S.-J. Young, C.-L. Chiou, Y.-H. Liu, L.-W. Ji, Synthesis of ga-doped zno nanorods by hydrothermal method and their application to ultraviolet photodetector, Inventions, 1 (1) (2016), p.3. |
[29] | A. Bera, D. Basak, Photoluminescence and photoconductivity of zns-coated zno nanowires, ACS Appl. Mater. Interfaces, 2 (2)(2010), pp. 408-412. |
[30] | J. Lu, C. Xu, J. Dai, J. Li, Y. Wang, Y. Lin, P. Li, Improved uv photoresponse of zno nanorod arrays by resonant coupling with surface plasmons of al nanoparticles, Nanoscale, 7 (8)(2015), pp. 3396-3403. |
[31] | S. Dhar, T. Majumder, S.P. Mondal, Graphene quantum dot-sensitized zno nanorod/polymer schottky junction uv detector with superior external quantum efficiency, detectivity, and responsivity, ACS Appl. Mater. Interfaces, 8 (46)(2016), pp. 31822-31831. |
[32] | D. Wang, A.E.L. Allcca, T.F. Chung, A.V. Kildishev, V.M. Shalaev, Enhancing the graphene photocurrent using surface plasmons and a p-n junction, Light: Sci. Appl., 9 (2020), p.126. |
[33] | S. Dhar, T. Majumder, S.P. Mondal, Phenomenal improvement of external quantum efficiency, detectivity and responsivity of nitrogen doped graphene quantum dot decorated zinc oxide nanorod/polymer schottky junction uv detector, Mater. Res. Bull., 95(2017), pp. 198-203. |
[34] | G.C. Park, S.M. Hwang, J.H. Lim, J. Joo, Growth behavior and electrical performance of ga-doped zno nanorod/p-si heterojunction diodes prepared using a hydrothermal method, Nanoscale, 6(2014), pp. 1840-1847. |
[35] | G. Pineda-Hernandez, A. Escobedo-Morales, U. Pal, E. Chigo-Anota, Morphology evolution of hydrothermally grown zno nanostructures on gallium doping and their defect structures, Mater. Chem. Phys., 135 (2-3)(2012), pp. 810-817. |
[36] | C. Li, H. Wang, F. Wang, T. Li, L. Shen, Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging, Light: Sci. Appl., 9 (2020), p.31. |
[37] | M. Jiang, G. He, H. Chen, Z. Zhang, L. Zheng, C. Shan, D. Shen, X. Fang, Wavelength-tunable electroluminescent light sources from individual ga-doped zno microwires, Small, 13 (19) (2017), p.1604034. |
[38] | Y. Liu, M. Jiang, G. He, S. Li, Z. Zhang, B. Li, H. Zhao, C. Shan, D. Shen, Wavelength-tunable ultraviolet electroluminescence from ga-doped zno microwires, ACS Appl. Mater. Interfaces, 9 (46)(2017), pp. 40743-40751. |
[39] | X. Zhou, M. Jiang, Y. Wu, K. Ma, Y. Liu, P. Wan, C. Kan, D. Shi, Hybrid quadrupole plasmon induced spectrally pure ultraviolet emission from a single agnps@zno: ga microwire based heterojunction diode, Nanoscale Adv., 2 (3)(2020), pp. 1340-1351. |
[40] | ü. özgür, Y.I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doǧan, V. Avrutin, S.-J. Cho, Morkoç, H, A comprehensive review of zno materials and devices, J. Appl. Phys., 98 (4) (2005), p.11. |
[41] | P. Wan, M. Jiang, K. Tang, X. Zhou, C. Kan, Hot electron injection induced electron-hole plasma lasing in a single microwire covered by large size ag nanoparticles, CrystEngComm, 22 (26)(2020), pp. 4393-4403. |
[42] | W. Mao, M. Jiang, J. Ji, Y. Liu, C. Kan, Fluorescent incandescent light sources from individual quadrilateral zno microwire via ga-incorporation, Opt. Express, 27 (23)(2019), pp. 33298-33311. |
[43] | L. Duan, P. Wang, F. Wei, W. Zhang, R. Yao, H. Xia, Electroluminescence of zno nanorods embedded in a polymer film, Solid State Commun., 200(2014), pp. 14-16. |
[44] | W. Ruane, K. Johansen, K. Leedy, D.C. Look, H. von Wenckstern, M. Grundmann, G.C. Farlow, L.J. Brillson, Defect segregation and optical emission in zno nano-and microwires, Nanoscale, 8 (14)(2016), pp. 7631-7637. |
[45] | J. Ram, R. Singh, F. Singh, V. Kumar, V. Chauhan, R. Gupta, U. Kumar, B. Yadav, R. Kumar, Development of wo 3-pedot: pss hybrid nanocomposites based devices for liquefied petroleum gas (lpg) sensor, J. Mater. Sci. Mater. Electron., 30 (14)(2019), pp. 13593-13603. |
[46] | Y. Wang, L. Zhu, Y. Feng, Z. Wang, Z.L. Wang, Comprehensive pyro-phototronic effect enhanced ultraviolet detector with zno/ag schottky junction, Adv. Funct. Mater., 29 (5) (2019), p.1807111. |
[47] | X. Wang, K. Liu, X. Chen, B. Li, M. Jiang, Z. Zhang, H. Zhao, D. Shen, Highly wavelength-selective enhancement of responsivity in ag nanoparticle-modified zno uv photodetector, ACS Appl. Mater. Interfaces, 9 (6)(2017), pp. 5574-5579. |
[48] | Z.M. Liao, Y. Lu, H.C. Wu, Y.Q. Bie, Y.B. Zhou, D.P. Yu, Improved performance of zno nanowire field-effect transistors via focused ion beam treatment, Nanotechnology, 22 (37) (2011), p.375201. |
[49] | Y. Zhu, K. Liu, Q. Ai, Q. Hou, X. Chen, Z. Zhang, X. Xie, B. Li, D. Shen, A high performance self-powered ultraviolet photodetector based on a p-gan/n-znmgo heterojunction, J. Mater. Chem. C, 8 (8)(2020), pp. 2719-2724. |
[50] | Q.-M. Fu, Z.-C. Yao, J.-L. Peng, H.-Y. Zhao, Z.-B. Ma, H. Tao, Y.-F. Tu, D. Zhou, Y. Tian, Enhanced photoresponse in zno nanorod array/p-gan self-powered ultraviolet photodetectors via coupling with cuo nanostructures, Mater. Res. Express, 7 (1) (2020), p.015063. |
[51] | H. Zhou, P. Gui, L. Yang, C. Ye, M. Xue, J. Mei, Z. Song, H. Wang, High performance, self-powered ultraviolet photodetector based on a zno nanoarrays/gan structure with a cds insert layer, New J. Chem., 41 (12)(2017), pp. 4901-4907. |
[52] | Y. Huang, L. Zhang, J. Wang, X. Chu, D. Zhang, X. Zhao, X. Li, L. Xin, Y. Zhao, F. Zhao, Enhanced photoresponse of n-zno/p-gan heterojunction ultraviolet photodetector with high-quality cspbbr3 films grown by pulse laser deposition, J. Alloy. Compd., 802 (2019), pp. 70-75. |
[53] | W. Peng, X. Wang, R. Yu, Y. Dai, H. Zou, A.C. Wang, Y. He, Z.L. Wang, Enhanced performance of a self-powered organic/inorganic photodetector by pyro-phototronic and piezo-phototronic effects, Adv. Mater., 29 (23) (2017), p.1606698. |
[54] | L. Su, Q. Zhang, T. Wu, M. Chen, Y. Su, Y. Zhu, R. Xiang, X. Gui, Z. Tang, High-performance zero-bias ultraviolet photodetector based on p-gan/n-zno heterojunction, Appl. Phys. Lett., 105 (7) (2014), p.072106. |
[55] | H. Xue, N. Pan, R. Zeng, M. Li, X. Sun, Z. Ding, X. Wang, J. Hou, Probing the surface effect on deep-level emissions of an individual zno nanowire via spatially resolved cathodoluminescence, J. Phys. Chem. C, 113 (29)(2009), pp. 12715-12718. |
[56] | Y.-R. Chang, P.-H. Ho, C.-Y. Wen, T.-P. Chen, S.-S. Li, J.-Y. Wang, M.-K. Li, C.-A. Tsai, R. Sankar, W.-H. Wang, P.-W. Chiu, F.-C. Chou, C.-W. Chen, Surface oxidation doping to enhance photogenerated carrier separation efficiency for ultrahigh gain indium selenide photodetector, ACS Photonics, 4 (11)(2017), pp. 2930-2936. |
[57] | B. Saleh, M. Teich, Fundamentals of photonics, 2nd edwiley, New York (2007). |
[58] | A. Soudi, P. Dhakal, Y. Gu, Diameter dependence of the minority carrier diffusion length in individual zno nanowires, Appl. Phys. Lett., 96 (25) (2010), p.253115. |
[59] | F. Yi, Q. Liao, Y. Huang, Y. Gu, Y. Zhang, Self-powered ultraviolet photodetector based on a single zno tetrapod/pedot:pss heterostructure, Semicond. Sci. Technol., 28 (10) (2013), pp. 2016-2018. |
[60] | Z. Jin, Q. Zhou, Y. Chen, P. Mao, H. Li, H. Liu, J. Wang, Y. Li, Graphdiyne: zno nanocomposites for high-performance uv photodetectors, Adv. Mater., 28 (19)(2016), pp. 3697-3702. |
[61] | F. Li, Y. Meng, X. Kang, S. Yip, X. Bu, H. Zhang, J.C. Ho, High-mobility in and ga co-doped zno nanowires for high-performance transistors and ultraviolet photodetectors, Nanoscale, 12 (30)(2020), pp. 16153-16161. |
[62] | Z. Wang, R. Yu, C. Pan, Z. Li, J. Yang, F. Yi, Z.L. Wang, Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing, Nat. Commun., 6 (1)(2015), pp. 1-7. |
[1] | Yuhui Zhang, Yuling Liu, Shuhong Liu, Hai-Lin Chen, Qing Chen, Shiyi Wen, Yong Du. Assessment of atomic mobilities and simulation of precipitation evolution in Mg-X (X=Al, Zn, Sn) alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 70-82. |
[2] | Tianyan Zhong, Huangxin Li, Tianming Zhao, Hongye Guan, Lili Xing, Xinyu Xue. Self-powered/self-cleaned atmosphere monitoring system from combining hydrovoltaic, gas sensing and photocatalytic effects of TiO2 nanoparticles [J]. J. Mater. Sci. Technol., 2021, 76(0): 33-40. |
[3] | Shixing Huang, Qinyang Zhao, Yongqing Zhao, Cheng Lin, Cong Wu, Weiju Jia, Chengliang Mao, Vincent Ji. Toughening effects of Mo and Nb addition on impact toughness and crack resistance of titanium alloys [J]. J. Mater. Sci. Technol., 2021, 79(0): 147-164. |
[4] | Muhammad Imran Saleem, Shangyi Yang, Attia Batool, Muhammad Sulaman, Chandrasekar Perumal Veeramalai, Yurong Jiang, Yi Tang, Yanyan Cui, Libin Tang, Bingsuo Zou. CsPbI3 nanorods as the interfacial layer for high-performance, all-solution-processed self-powered photodetectors [J]. J. Mater. Sci. Technol., 2021, 75(0): 196-204. |
[5] | Shuangshuang Shao, Kun Liang, Xinxing Li, Jinfeng Zhang, Chuan Liu, Zheng Cui, Jianwen Zhao. Large-area (64 × 64 array) inkjet-printed high-performance metal oxide bilayer heterojunction thin film transistors and n-metal-oxide-semiconductor (NMOS) inverters [J]. J. Mater. Sci. Technol., 2021, 81(0): 26-35. |
[6] | Jing Zhong, Lijun Zhang, Xiaoke Wu, Li Chen, Chunming Deng. A novel computational framework for establishment of atomic mobility database directly from composition profiles and its uncertainty quantification [J]. J. Mater. Sci. Technol., 2020, 48(0): 163-174. |
[7] | Zhen Chen, Daoyong Cong, Yin Zhang, Xiaoming Sun, Runguang Li, Shaohui Li, Zhi Yang, Chao Song, Yuxian Cao, Yang Ren, Yandong Wang. Intrinsic two-way shape memory effect in a Ni-Mn-Sn metamagnetic shape memory microwire [J]. J. Mater. Sci. Technol., 2020, 45(0): 44-48. |
[8] | C. Guillén, J. Herrero. P-type SnO thin films prepared by reactive sputtering at high deposition rates [J]. J. Mater. Sci. Technol., 2019, 35(8): 1706-1711. |
[9] | Zize Liu, Tianming Zhao, Hongye Guan, Tianyan Zhong, Haoxuan He, Lili Xing, Xinyu Xue. A self-powered temperature-sensitive electronic-skin based on tribotronic effect of PDMS/PANI nanostructures [J]. J. Mater. Sci. Technol., 2019, 35(10): 2187-2193. |
[10] | H.K. Yang, K. Cao, Y. Han, M. Wen, J.M. Guo, Z.L. Tan, J. Lu, Y. Lu. The combined effects of grain and sample sizes on the mechanical properties and fracture modes of gold microwires [J]. J. Mater. Sci. Technol., 2019, 35(1): 76-83. |
[11] | X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, H.Y. Wang. What is going on in magnesium alloys? [J]. J. Mater. Sci. Technol., 2018, 34(2): 245-247. |
[12] | Yanhong Chang, Jing Li, Bin Wang, Hui Luo, Linjie Zhi. A Facile Synthetic Approach to Reduced Graphene Oxide-Fe3O4 Composite as High Performance Anode for Lithium-ion Batteries [J]. J. Mater. Sci. Technol., 2014, 30(8): 759-764. |
[13] | P. Jayaram, T.P. Jaya, Smagul Zh. Karazhanov, P.P. Pradyumnan. Structural and Physical Property Analysis of ZnO-SnO2-In2O3-Ga2O3 Quaternary Transparent Conducting Oxide System [J]. J. Mater. Sci. Technol., 2013, 29(5): 419-422. |
[14] | Yipeng Chao, Wu Tang, Xuehui Wang. Properties of Resistivity, Reflection and Absorption Related to Structure of ITO Films [J]. J Mater Sci Technol, 2012, 28(4): 325-328. |
[15] | Wei Zhou, Xiang Li, Sujing Xia, Jie Yang, Wu Tang, K.M. Lau. High Hole Mobility of GaSb Relaxed Epilayer Grown on GaAs Substrate by MOCVD through Interfacial Misfit Dislocations Array [J]. J Mater Sci Technol, 2012, 28(2): 132-136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||