J. Mater. Sci. Technol. ›› 2021, Vol. 89: 45-51.DOI: 10.1016/j.jmst.2021.02.012
Previous Articles Next Articles
Zhiyu Chena, Juan Lib, Jing Tangb, Fujie Zhanga, Yan Zhonga, Hangtian Liua, Ran Anga,c,*(
)
Received:2021-01-08
Revised:2021-01-29
Accepted:2021-02-02
Published:2021-10-30
Online:2021-10-30
Contact:
Ran Ang
About author:*Key Laboratory of Radiation Physics and Technol-ogy, Ministry of Education, Institute of Nuclear Science and Technology, SichuanUniversity, Chengdu, 610064, China.E-mail address: rang@scu.edu.cn (R. Ang).1These authors contributed equally to this work.
Zhiyu Chen, Juan Li, Jing Tang, Fujie Zhang, Yan Zhong, Hangtian Liu, Ran Ang. Boosting thermoelectrics by alloying Cu2Se in SnTe-CdTe compounds[J]. J. Mater. Sci. Technol., 2021, 89: 45-51.
Fig. 1. Room temperature powder X-ray diffraction (XRD) patterns (a) and the corresponding lattice parameter a (b) for (Sn0.99Cd0.03Te)1-x(Cu2Se)x samples (0≤x≤0.04).
Fig. 2. Scanning electron microscopy (SEM) images for samples Sn0.99Cd0.03Te (a) and (Sn0.99Cd0.03Te)0.97(Cu2Se)0.03 (b). The energy-dispersive spectroscopy (EDS) analysis of the matrix (c) and the precipitates (d) for sample (Sn0.99Cd0.03Te)0.97(Cu2Se)0.03.
Fig. 4. Carrier concentration dependent Seebeck coefficient S (a) and Hall mobility μH (b) at room temperature for (Sn0.99Cd0.03Te)1-x(Cu2Se)x (0.01 ≤ x ≤ 0.04) alloys, with a comparison to theoretical predictions (gray curves) and literature results for SnTe-Cu2Te,SnTe-CdTe and SnTe-CdSe [36,45,48,56].
Fig. 5. Temperature dependent resistivity ρ (a), Seebeck coefficient S (b), power factor PF (c), and weighted mobility μw (d) for (Sn0.99Cd0.03Te)1-x(Cu2Se)x (x = 0~0.04). The inset in (d) shows the alloying content dependent μw at 800 K.
Fig. 6. Temperature dependent total thermal conductivity κ and lattice thermal conductivity κL (a). Composition dependent longitudinal (vl), transverse (vt), average (vs) sound velocities, and Grüneisen parameters γ at 300 K for (Sn0.99Cd0.03Te)1-x(Cu2Se)x (0≤x≤0.04) (b). The Cu2Se alloying content dependent lattice thermal conductivity κL for (Sn0.99Cd0.03Te)1-x(Cu2Se)x alloys at room temperature, with a comparison to Debye-Callaway prediction. The blue and gray solid prediction curve considerate x and 2x Cu-substitutional defects, respectively (c).
Fig. 7. Temperature dependent figure of merit zT for (Sn0.99Cd0.03Te)1-x(Cu2Se)x, with a comparison to pristine SnTe [43] (a). zT at 800 K for x = 0 and 0.03, with a comparison to literature results of other SnTe-based alloys [43,45,48] (b). Reduced Fermi level dependent zT with different quality factor B (c) for materials in this work, with a comparison to pristine SnTe, SnTe-CdSe, SnTe-CdTe, and SnTe-CdTe-Cu2Te system results [36,43,44,48].
| [1] |
Y. Xiao, L.-D. Zhao, Science 367 (2020) 1196-1197.
DOI PMID |
| [2] |
X. Shi, J. Zou, Z.G. Chen, Chem. Rev. 120 (2020) 7399-7515.
DOI URL |
| [3] |
K. Zhao, K. Liu, Z. Yue, Y. Wang, Q. Song, J. Li, M. Guan, Q. Xu, P. Qiu, H. Zhu, L. Chen X. Shi, Adv. Mater. 31 (2019), 1903480.
DOI URL |
| [4] | J. He, T.M. Tritt, Science 357 (2017) 1369. |
| [5] |
G. Tan, L.D. Zhao, M.G. Kanatzidis, Chem. Rev. 116 (2016) 12123-12149.
DOI URL |
| [6] | X.-L. Shi, X. Tao, J. Zou, Z.-G. Chen, Adv. Sci. (2020), 1902923. |
| [7] |
C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao, T. Zhu, Nat. Commun. 6 (2015) 8144.
DOI URL |
| [8] |
W.G. Zeier, A. Zevalkink, Z.M. Gibbs, G. Hautier, M.G. Kanatzidis, G.J. Snyder, Angew. Chem. 55 (2016) 6826-6841.
DOI URL |
| [9] |
X. Shi, A. Wu, T. Feng, K. Zheng, W. Liu, Q. Sun, M. Hong, S.T. Pantelides, Z.-G. Chen, J. Zou, Adv. Energy Mater. 9 (2019), 1803242.
DOI URL |
| [10] |
Y. Wu, Z. Chen, P. Nan, F. Xiong, S. Lin, X. Zhang, Y. Chen, L. Chen, B. Ge, Y. Pei, Joule 3 (2019) 1-13.
DOI URL |
| [11] |
K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M. G.Kanatzidis , Nature 489 (2012) 414-418.
DOI URL |
| [12] |
L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nature 508 (2014) 373-377.
DOI URL |
| [13] | C.W. Li, J. Hong, A.F. May, D. Bansal, S. Chi, T. Hong, G. Ehlers, O. Delaire, Nat.Phys. 11 (2015) 1063-1069. |
| [14] |
Z. Chen, B. Gao, J. Tang, X. Guo, W. Li, R. Ang, Appl. Phys. Lett. 115 (2019),073903.
DOI URL |
| [15] |
Y. Yu, C. Zhou, S. Zhang, M. Zhu, M. Wuttig, C. Scheu, D. Raabe, G.J. Snyder, O. Cojocaru-Mirédin , Mater. Today 32 (2020) 260-274.
DOI URL |
| [16] |
R. Hanus, M.T. Agne, A.J.E.Rettie, Z. Chen, G.Tan, D.Y. Chung, M.G. Kanatzidis,Y. Pei, P.W. Voorhees, G.J. Snyder, Adv. Mater. 31 (2019), 1900108.
DOI URL |
| [17] |
X. Su, P. Wei, H. Li, W. Liu, Y. Yan, P. Li, C. Su, C. Xie, W. Zhao, P. Zhai, Q. Zhang, X. Tang, C. Uher, Adv. Mater. 29 (2017), 1602013.
DOI URL |
| [18] |
F. Zhang, C. Chen, H. Yao, F. Bai, L. Yin, X. Li, S. Li, W. Xue, Y. Wang, F. Cao, X. Liu J. Sui, Q. Zhang, Adv. Funct. Mater. 30 (2019) 1906143.
DOI URL |
| [19] |
Y. Xiao, Y. Wu, P. Nan, H. Dong, Z. Chen, Z. Chen, H. Gu, B. Ge, W. Li, Y. Pei, Chem 6 (2020) 1-15.
DOI URL |
| [20] |
Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G.J. Snyder, Nature 473 (2011) 66-69.
DOI URL |
| [21] |
R. He, D. Kraemer, J. Mao, L. Zeng, Q. Jie, Y. Lan, C. Li, J. Shuai, H.S. Kim, Y. Liu, D. Broido, C.-W. Chu, G.Chen, Z. Ren, Proc. Natl. Acad. Sci. U.S.A. 113 (2016) 13576.
DOI URL |
| [22] |
J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee S. Yamanaka, G.J. Snyder, Science 321 (2008) 554-557.
DOI PMID |
| [23] | C. Gayner, Y. Amouyal, Adv. Funct. Mater. (2019), 1901789. |
| [24] |
R. Moshwan, W. Liu, X. Shi, Y. Wang, Z.-G. Chen, Nano Energy 65 (2019),104056.
DOI URL |
| [25] | Y. Wu, P. Nan, Z. Chen, Z. Zeng, R. Liu, H. Dong, L. Xie, Y. Xiao, Z. Chen, H. Gu, W. Li, Y. Chen, B. Ge, Y. Pei, Adv. Sci. (2020), 1902628. |
| [26] |
H. Wang, Z.M. Gibbs, Y. Takagiwa, G.J. Snyder, Energy Environ. Sci. 7 (2014) 804-811.
DOI URL |
| [27] |
J. Zhang, L. Song, S.H. Pedersen, H. Yin, L.T. Hung, B.B. Iversen, Nat. Commun. 8 (2017) 13901.
DOI URL |
| [28] | R. Moshwan, W. Liu, X. Shi, Q. Sun, H. Gao, Y. Wang, J. Zou, Z.-G. Chen, J. Mater.Chem. A 8 (2020) 3978-3987. |
| [29] |
Y. Xiao, D. Wang, Y. Zhang, C. Chen, S. Zhang, K. Wang, G. Wang, S.J. Pennycook, G.J. Snyder, H. Wu, L.D. Zhao, , J. Am. Chem. Soc. 142 (2020) 4051-4060.
DOI PMID |
| [30] |
Q. Zhang, B. Liao, Y. Lan, K. Lukas, W. Liu, K. Esfarjani, C. Opeil, D. Broido, G. Chen Z. Ren, Proc. Natl. Acad. Sci. U.S.A. 110 (2013) 13261-13266.
DOI URL |
| [31] | Y. Pei, Z.M. Gibbs, B. Balke, W.G. Zeier, G.J. Snyder, Adv. Energy Mater. (2014),1400436. |
| [32] |
H.J. Wu, L.D. Zhao, F.S. Zheng, D. Wu, Y.L. Pei, X. Tong, M.G. Kanatzidis, J.Q. He, Nat. Commun. 5 (2014) 4515.
DOI PMID |
| [33] |
G. Tan, F. Shi, S. Hao, L. Zhao, H. Chi, X. Zhang, C. Uher, C. Wolverton, V. P.Dravid M.G. Kanatzidis, Nat. Commun. 7 (2016) 12167.
DOI URL |
| [34] |
L.M. Rogers, J. Phys. D Appl. Phys. 1 (1968) 845.
DOI URL |
| [35] |
G. Tan, W.G. Zeier, F. Shi, P. Wang, G.J. Snyder, V.P. Dravid, M.G. Kanatzidis, Chem. Mater. 27 (2015) 7801-7811.
DOI URL |
| [36] |
G. Tan, L.D. Zhao, F. Shi, J.W. Doak, S.H. Lo, H. Sun, C. Wolverton, V.P. Dravid, C. Uher M.G. Kanatzidis, , J. Am. Chem. Soc. 136 (2014) 7006-7017.
DOI URL |
| [37] |
A. Banik, U.S. Shenoy, S. Anand, U.V. Waghmare, K. Biswas, Chem. Mater. 27 (2015) 581-587.
DOI URL |
| [38] |
H. Wu, C. Chang, D. Feng, Y. Xiao, X. Zhang, Y. Pei, L. Zheng, D. Wu, S. Gong, Y. Chen J. He, M.G. Kanatzidis, L.-D. Zhao, Energy Environ.Sci. 8 (2015) 3298-3312.
DOI URL |
| [39] |
Z. Chen, J. Tang, X. Guo, F. Zhang, R. Ang, Appl. Phys. Lett. 116 (2020), 193902.
DOI URL |
| [40] |
W. Li, Z. Chen, S. Lin, Y. Chang, B. Ge, Y. Chen, Y. Pei, J. Materiomics 1 (2015) 307-315.
DOI URL |
| [41] |
G. Tan, F. Shi, J.W. Doak, H. Sun, L.-D. Zhao, P.Wang, C. Uher, C. Wolverton,V.P. Dravid, M.G. Kanatzidis, Energy Environ. Sci. 8 (2015) 267-277.
DOI URL |
| [42] |
R. Al Rahal Al Orabi, N.A. Mecholsky, J. Hwang, W. Kim, J.-S. Rhyee, D. Wee, M. Fornari, Chem. Mater. 28 (2016) 376-384.
DOI URL |
| [43] | Z. Chen, X. Guo, J. Tang, F. Xiong, W. Li, Y. Chen, R. Ang, ACS Appl. Mater.Interfaces 11 (2019) 26093-26099. |
| [44] | J. Tang, B. Gao, S. Lin, X. Wang, X. Zhang, F. Xiong, W. Li, Y. Chen, Y. Pei, ACSEnergy Lett. 3 (2018) 1969-1974. |
| [45] | Y. Pei, L. Zheng, W. Li, S. Lin, Z. Chen, Y. Wang, X. Xu, H. Yu, Y. Chen, B. Ge, Adv.Electron. Mater. 2 (2016), 1600019. |
| [46] | W. Li, L. Zheng, B. Ge, S. Lin, X. Zhang, Z. Chen, Y. Chang, Y. Pei, Adv. Mater. (2017), 1605887. |
| [47] | J. Tang, B. Gao, S. Lin, J. Li, Z. Chen, F. Xiong, W. Li, Y. Chen, Y. Pei, Adv. Funct.Mater. (2018), 1803586. |
| [48] |
B. Gao, J. Tang, F. Meng, W. Li, J. Materiomics 5 (2019) 111-117.
DOI |
| [49] |
A.Ba.K. Biswas, J. Mater. Chem. A 2 (2014) 9620-9625.
DOI URL |
| [50] |
D. Li, H.W. Ming, J.M. Li, J. Zhang, X.Y. Qin, W. Xu, ACS Appl. Energy Mater. 2 (2019) 8966-8973.
DOI |
| [51] |
A. Zevalkink, D.M. Smiadak, J.L. Blackburn, A.J. Ferguson, M.L. Chabinyc, O. Delaire J. Wang, K. Kovnir, J. Martin, L.T. Schelhas, T.D. Sparks, S.D. Kang, M. T.Dylla G.J. Snyder, B.R. Ortiz, E.S. Toberer, Appl. Phys. Rev. 5 (2018), 021303.
DOI URL |
| [52] |
Z. Chen, X. Guo, F. Zhang, Q. Shi, M. Tang, R. Ang, J. Mater. Chem. A 8 (2020) 16790-16813.
DOI URL |
| [53] |
L.D. Partain, R.A. Schneider, L.F. Donaghey, P.S. Mcleod, , J. Appl. Phys. 57 (1985) 5056-5065.
DOI URL |
| [54] |
L. Zheng, W. Li, S. Lin, J. Li, Z. Chen, Y. Pei, ACS Energy Lett. 2 (2017) 563-568.
DOI URL |
| [55] | Y.I. Ravich, B.A. Efimova, I.A. Smirnov L.S. Stil’Bans, Semiconducting LeadChalcogenides, Springer U.S., 1970. |
| [56] | M. Zhou, Z.M. Gibbs, H. Wang, Y. Han, C. Xin, L. Li, G.J. Snyder, Phys. Chem.Chem. Phys. 16 (2014) 20741-20748. |
| [57] |
T.S. Sun, S.P. Buchner, N.E. Byer, , J. Vac. Sci. Technol. 17 (1980) 1067-1073.
DOI URL |
| [58] | G.J. Snyder, A.H. Snyder, M. Wood, R. Gurunathan, B.H. Snyder, C. Niu, Adv.Mater. (2020), 2001537. |
| [59] |
B. Abeles, Phys. Rev. 131 (1963) 1906-1911.
DOI URL |
| [1] | Samuel Kimani Kihoi, Joseph Ngugi Kahiu, Hyunji Kim, U. Sandhya Shenoy, D. Krishna Bhat, Seonghoon Yi, Ho Seong Lee. Optimized Mn and Bi co-doping in SnTe based thermoelectric material: A case of band engineering and density of states tuning [J]. J. Mater. Sci. Technol., 2021, 85(0): 76-86. |
| [2] | Ximeng Dong, Wenlin Cui, Wei-Di Liu, Shuqi Zheng, Lei Gao, Luo Yue, Yue Wu, Boyi Wang, Zipei Zhang, Liqiang Chen, Zhi-Gang Chen. Synergistic band convergence and defect engineering boost thermoelectric performance of SnTe [J]. J. Mater. Sci. Technol., 2021, 86(0): 204-209. |
| [3] | C.H. Yan, F. Wei, Y. Bai, F. Wang, A.Q. Zhang, S. Ma, W. Liu, Z.D. Zhang. Structure and topological transport in Pb-doping topological crystalline insulator SnTe (001) film [J]. J. Mater. Sci. Technol., 2020, 44(0): 223-228. |
| [4] | Ying Li, Jixiang Qiao, Yang Zhao, Qing Lan, Pengyan Mao, Jianhang Qiu, Kaiping Tai, Chang Liu, Huiming Cheng. A flexible thermoelectric device based on a Bi2Te3-carbon nanotube hybrid [J]. J. Mater. Sci. Technol., 2020, 58(0): 80-85. |
| [5] | Geng He, Feifei Qin, Chunxiang Xu, Chinhua Wang, Yu Xu, Bing Cao, Ke Xu. Double-triangular whispering-gallery mode lasing from a hexagonal GaN microdisk grown on graphene [J]. J. Mater. Sci. Technol., 2020, 53(0): 140-145. |
| [6] | Dong Liang, Juan Du, Xuan P.A. Gao. InAs Nanowire Devices with Strong Gate Tunability: Fundamental Electron Transport Properties and Application Prospects: A Review [J]. J. Mater. Sci. Technol., 2015, 31(6): 542-555. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
