J. Mater. Sci. Technol. ›› 2021, Vol. 87: 176-183.DOI: 10.1016/j.jmst.2021.02.013
• Research Article • Previous Articles Next Articles
Shuang Zhanga, Fei Wangb, Ping Huanga,*()
Received:
2020-09-29
Revised:
2020-12-04
Accepted:
2021-02-02
Published:
2021-10-10
Online:
2021-03-19
Contact:
Ping Huang
About author:
* E-mail address: huangping@mail.xjtu.edu.cn (P. Huang).Shuang Zhang, Fei Wang, Ping Huang. Enhanced Hall-Petch strengthening in graphene/Cu nanocomposites[J]. J. Mater. Sci. Technol., 2021, 87: 176-183.
Grain size (nm) | NC Cu | GrB/Cu | |||
---|---|---|---|---|---|
Flow strength (GPa) | wt (%) | vol (%) | Tensile strength (GPa) | Failure strain | |
d=15.96 | 1.79 | 1.62 | 6.28 | 3.16 | 0.144 |
d = 12.50 | 1.89 | 2.11 | 8.07 | 3.50 | 0.175 |
d=8.33 | 1.94 | 3.11 | 11.57 | 4.77 | 0.178 |
d=6.53 | 1.82 | 4.07 | 14.76 | 6.51 | 0.253 |
d=5.39 | 1.70 | 5.03 | 17.74 | 8.77 | 0.243 |
Table 1 Mechanical properties of the simulated NC Cu and GrB/Cu samples.
Grain size (nm) | NC Cu | GrB/Cu | |||
---|---|---|---|---|---|
Flow strength (GPa) | wt (%) | vol (%) | Tensile strength (GPa) | Failure strain | |
d=15.96 | 1.79 | 1.62 | 6.28 | 3.16 | 0.144 |
d = 12.50 | 1.89 | 2.11 | 8.07 | 3.50 | 0.175 |
d=8.33 | 1.94 | 3.11 | 11.57 | 4.77 | 0.178 |
d=6.53 | 1.82 | 4.07 | 14.76 | 6.51 | 0.253 |
d=5.39 | 1.70 | 5.03 | 17.74 | 8.77 | 0.243 |
Fig. 1. Simulation samples. (a)-(j) Nanocrystalline Cu (NC Cu) and graphene-boundary embedded nanocrystalline Cu (GrB/Cu) samples with grain size from 15.96, 12.50, 8.33, 6.53 to 5.39 nm. (a1)-(j1) The equilibrium structures of (a)-(e) NC Cu and (f)-(j) GrB/Cu samples with grain size from 15.96, 12.50, 8.33, 6.53 to 5.39 nm. Grain growth process gradually enhanced with reducing grain size in NC Cu marked by black arrows, while no grain growth was observed in GrB/Cu samples. Atoms are colored by CNA, and green, red and gray atoms indicate fcc, hcp and other structures, respectively. Graphene atoms are rendered purple for convenient observation.
Fig. 2. Equilibrium microstructures. (a) The volume fractions of atoms with tensile and compressive stress in NC Cu and GrB/Cu samples with various grain sizes. (b) The stress distribution of the two samples with grain size of 5.39 nm as an example. The atoms are colored by normal stress in x direction and the color maps in (b) are in unit of GPa; and the change from blue to red corresponds to the transition from compressive stress to tension stress. Only atoms whose stress value larger than 10 GPa (-10 GPa) are shown.
Fig. 3. Mechanical properties. (a) The stress-strain curves of different grain size samples with increasing strain. (b) The relationship between tensile strength and failure strain varying with different grain sizes.
Fig. 4. HP relation. (a) The relation curve between strength and grain diameter. NC Cu samples exhibit HP relation when reduce to 10 nm, then show inverse HP relation. However, GrB/Cu samples always exhibit enhanced HP relation even until very small grain diameter. Black and blue curve represent linear and exponential fitting, respectively. (b)-(c) The HP slope k as a function of grain diameter d and graphene fraction Vf. The dash line represents exponential fitting relation.
Fig. 5. Successive snapshots illustrating the atomic scale tensile deformation mechanism in GrB/Cu samples. Here, atoms are colored based on the CNA, green, red and gray atoms indicate fcc, hcp and other structures, respectively. Graphene atoms are colored by purple for easy observation.
Fig. 6. Dislocation blockage and load bearing behavior in GrB/Cu samples with the grain size of 15.96 nm. (a)-(c) Showing dislocation interaction with interface as strain increases; and (d) load bearing behavior illustrated by graphene layer without Cu atoms. Atoms are colored by normal stress in x direction, color map is in unit of GPa and blue to red means compressive stress to tension stress. Atoms zoom in or out for better observation, large atoms indicating graphene layer, smaller atoms indicating Cu atoms. The dark kinked line where the arrow pointed represents a dislocation.
Fig. 7. Average stress statistically distribution of the interfacial Cu with interior Cu atoms in NC Cu and GrB/Cu samples from the view of x-z plane divided by 100 bins, colored by normal stress in x direction and color map is in unit of GPa, blue to red meaning compressive stress to tension stress. Each picture corresponds to certain grain size with whose grain size gradually reduces from top to bottom. Delete graphene atoms in GrB/Cu samples only to observe the influence on Cu atoms.
Fig. 8. Section-view of microstructures of (a) NC Cu and (b) GrB/Cu at strain of 10 % that atoms colored by CNA, green, red and gray atoms indicating fcc, hcp and other structures, respectively. Graphene atoms are colored by purple for recognition. (c) and (d) are section-view colored based on shear strain corresponding to (a) and (b). The brighter the color, the greater the strain.
Fig. 10. Grain size dependent Hall-Petch strengthening mechanism in NC Cu and GrB/Cu samples. Purple and dark hexagons indicate GrB/Cu and NC Cu grains, respectively. Different shades of blue represent the magnitude of interfacial stress, the darker the color, the greater the negative stress. CG and UFG represent coarse-grained and ultrafine-grained regimes, respectively.
[1] |
A.H. Chokshi, Adv. Eng. Mater. 22 (2019), 1900748.
DOI URL |
[2] |
Z.C. Cordero, B.E. Knight, C.A. Schuh, Int. Mater. Rev. 61 (2016) 495-512.
DOI URL |
[3] |
S.N. Naik, S.M. Walley, J. Mater. Sci. 55 (2019) 2661-2681.
DOI URL |
[4] |
E.O. Hall, Proc. Phys. Soc. B 64 (1951) 747-753.
DOI URL |
[5] | P. NJ, J. Iron. Steel. Inst. 174 (1953) 25-28. |
[6] |
Jakob Schiøtz, K.W. Jacobsen, Science 301 (2003) 1357-1359.
PMID |
[7] |
M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater. Sci. 51 (2006) 427-556.
DOI URL |
[8] |
E.N. Hahn, M.A. Meyers, Mater. Sci. Eng. A 646 (2015) 101-134.
DOI URL |
[9] |
R. Ma, Y. Zhou, H. Bi, M. Yang, J. Wang, Q. Liu, F. Huang, Prog. Mater. Sci. 113 (2020), 100665.
DOI URL |
[10] |
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Adv. Mater. 22 (2010) 3906-3924.
DOI URL |
[11] |
D.G. Papageorgiou, I.A. Kinloch, R.J. Young, Prog. Mater. Sci. 90 (2017) 75-127.
DOI URL |
[12] |
M. Yang, Y. Liu, T. Fan, D. Zhang, Prog. Mater. Sci. 110 (2020), 100652.
DOI URL |
[13] |
X. Zhang, N. Zhao, C. He, Prog. Mater. Sci. 113 (2020), 100672.
DOI URL |
[14] | T. Watanabe, Res. Mechanica. 11 (1984) 47. |
[15] |
S. Zhang, P. Huang, F. Wang, Mater. Des. 190 (2020), 108555.
DOI URL |
[16] |
Y.N.S.J. Hu, X. Sauvage, G. Sha, K. Lu, Science 355 (2017) 1292-1296.
DOI PMID |
[17] |
X. Zhou, Z. Feng, L. Zhu, J. Xu, L. Miyagi, H. Dong, H. Sheng, Y. Wang, Q. Li, Y. Ma, H. Zhang, J. Yan, N. Tamura, M. Kunz, K. Lutker, T. Huang, D.A. Hughes, X. Huang, B. Chen, Nature 579 (2020) 67-72.
DOI URL |
[18] |
Z. Yang, L. Wang, Y. Cui, Z. Shi, M. Wang, W. Fei, Nanoscale 10 (2018) 16990-16995.
DOI URL |
[19] |
X. Zhang, Y. Xu, M. Wang, E. Liu, N. Zhao, C. Shi, D. Lin, F. Zhu, C. He, Nat. Commun. 11 (2020) 2775.
DOI URL |
[20] |
C. Sun, X. Zhang, N. Zhao, C. He, Mater. Sci. Eng. A 756 (2019) 82-91.
DOI URL |
[21] |
X. Zhang, C. Shi, E. Liu, N. Zhao, C. He, Mater. Sci. Eng. A 762 (2019), 138063.
DOI URL |
[22] |
X. Li, S. Yan, X. Chen, Q. Hong, N. Wang, J. Alloys. Compd. 834 (2020), 155182.
DOI URL |
[23] |
S.M. Foiles, M.I. Baskes, M.S. Daw, Phys. Rev. B 33 (1986) 7983-7991.
PMID |
[24] |
X.Y. Liu, F.C. Wang, W.Q. Wang, H.A. Wu, Carbon 107 (2016) 680-688.
DOI URL |
[25] |
Zhiping Xu, M.J. Buehler, ACS Nano 3 (9) (2009) 2767-2775.
DOI PMID |
[26] |
S.J. Stuart, A.B. Tutein, J.A. Harrison, J. Chem. Phys. 112 (2000) 6472-6486.
DOI URL |
[27] |
R. He, L. Zhao, N. Petrone, K.S. Kim, M. Roth, J. Hone, P. Kim, A. Pasupathy, A. Pinczuk, Nano Lett. 12 (2012) 2408-2413.
DOI URL |
[28] |
S.-J. Guo, Q.-S. Yang, X.Q. He, K.M. Liew, Compos. Part B Eng. 58 (2014) 586-592.
DOI URL |
[29] |
H. Huang, X.B. Tang, F.D. Chen, Y.H. Yang, J. Liu, H. Li, D. Chen, J. Nucl. Mater. 460 (2015) 16-22.
DOI URL |
[30] | Y. Chen, X. Zhang, E. Liu, C. He, Y. Han, Q. Li, P. Nash, N. Zhao, J. Alloys. Compd. 688 (2016) 69-76. |
[31] |
S. Wang, S. Han, G. Xin, J. Lin, R. Wei, J. Lian, K. Sun, X. Zu, Q. Yu, Mater. Des. 139 (2018) 181-187.
DOI URL |
[32] |
K. Chu, C. Jia, Phys. Status Solidi A 211 (2014) 184-190.
DOI URL |
[33] | S. Plimpton, J. Comput. Phys. 117 (1995) 1-19. |
[34] |
A. Stukowski, Modell. Simul. Mater. Sci. Eng. 18 (2010) 015012.
DOI URL |
[35] |
D. Faken, H. Jónsson, Comput. Mater. Sci. 2 (1994) 279-286.
DOI URL |
[36] |
A. Stukowski, V.V. Bulatov, A. Arsenlis, Modell. Simul. Mater. Sci. Eng. 20 (2012), 085007.
DOI URL |
[37] | A. Hasnaoui, H. Van Swygenhoven, P.M. Derlet, Phys. Rev. B 66(2002). |
[38] | J.C.M. Li, Trans. Met. Soc. Aime. 227 (1963) 239-247. |
[39] |
X. Li, L. Lu, J. Li, X. Zhang, H. Gao, Nat. Rev. Mater. 5 (2020) 706-723.
DOI URL |
[40] |
R. Xu, G. Fan, Z. Tan, G. Ji, C. Chen, B. Beausir, D.-B. Xiong, Q. Guo, C. Guo, Z. Li, D. Zhang, Mater. Res. Lett. 6 (2017) 113-120.
DOI URL |
[41] |
L. Thilly, S.V. Petegem, P.-O. Renault, F. Lecouturier, V. Vidal, B. Schmitt, H.V. Swygenhoven, Acta Mater. 57 (2009) 3157-3169.
DOI URL |
[42] |
X. Fang, Q. Xue, K. Yu, R. Li, D. Jiang, L. Ge, Y. Ren, C. Chen, X. Wu, Mater. Res. Lett. 8 (2020) 417-423.
DOI URL |
[43] |
M. Yang, Y. Pan, F. Yuan, Y. Zhu, X. Wu, Mater. Res. Lett. 4 (2016) 145-151.
DOI URL |
[44] |
J. Li, Q. Zhang, R. Huang, X. Li, H. Gao, Scr. Mater. 186 (2020) 304-311.
DOI URL |
[45] |
M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe, Acta Mater. 59 (2011) 658-670.
DOI URL |
[46] |
X.L. Liu, Q.Q. Xue, W. Wang, L.L. Zhou, P. Jiang, H.S. Ma, F.P. Yuan, Y.G. Wei, X.L. Wu, Materialia 7 (2019), 100376.
DOI URL |
[47] |
Wenbin Li, Fuping Yuan, X. Wu,, AIP Adv. 5 (2015), 087120.
DOI URL |
[48] |
X.L. Wu, P. Jiang, L. Chen, J.F. Zhang, F.P. Yuan, Y.T. Zhu, Mater. Res. Lett. 2 (2014) 185-191.
DOI URL |
[49] | M.F. Ashby, Philos. Mag. 21 (2006) 399-424. |
[1] | Di Wu, Libin Liu, Lijun Zeng, Wenguang Zhu, Wanlin Wang, Xiaoyong Zhang, Junfeng Hou, Baoliang Liu, Jiafeng Lei, Kechao Zhou. Designing high-strength titanium alloy using pseudo-spinodal mechanism through diffusion multiple experiment and CALPHAD calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 78-88. |
[2] | Yongliang Qi, Tinghui Cao, Hongxiang Zong, Yake Wu, Lin He, Xiangdong Ding, Feng Jiang, Shenbao Jin, Gang Sha, Jun Sun. Enhancement of strength-ductility balance of heavy Ti and Al alloyed FeCoNiCr high-entropy alloys via boron doping [J]. J. Mater. Sci. Technol., 2021, 75(0): 154-163. |
[3] | Longqing Tang, Guowei Bo, Fulin Jiang, Shiwei Xu, Jie Teng, Dingfa Fu, Hui Zhang. Unravelling the precipitation evolutions of AZ80 magnesium alloy during non-isothermal and isothermal processes [J]. J. Mater. Sci. Technol., 2021, 75(0): 184-195. |
[4] | Wenshuo Liang, Guimin Lu, Jianguo Yu. Theoretical prediction on the local structure and transport properties of molten alkali chlorides by deep potentials [J]. J. Mater. Sci. Technol., 2021, 75(0): 78-85. |
[5] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
[6] | Byungchul Kang, Taeyeong Kong, Ho Jin Ryu, Soon Hyung Hong. Superior mechanical properties and strengthening mechanisms of lightweight AlxCrNbVMo refractory high-entropy alloys (x = 0, 0.5, 1.0) fabricated by the powder metallurgy process [J]. J. Mater. Sci. Technol., 2021, 69(0): 32-41. |
[7] | Hongge Li, Yongjiang Huang, Jianfei Sun, Yunzhuo Lu. The relationship between thermo-mechanical history, microstructure and mechanical properties in additively manufactured CoCrFeMnNi high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 77(0): 187-195. |
[8] | Yanan Zhao, Zongqing Ma, Liming Yu, Ji Dong, Yongchang Liu. The simultaneous improvements of strength and ductility in additive manufactured Ni-based superalloy via controlling cellular subgrain microstructure [J]. J. Mater. Sci. Technol., 2021, 68(0): 184-190. |
[9] | Peng-Cheng Zhao, Guang-Jian Yuan, Run-Zi Wang, Bo Guan, Yun-Fei Jia, Xian-Cheng Zhang, Shan-Tung Tu. Grain-refining and strengthening mechanisms of bulk ultrafine grained CP-Ti processed by L-ECAP and MDF [J]. J. Mater. Sci. Technol., 2021, 83(0): 196-207. |
[10] | Qinqin Wei, Guoqiang Luo, Rong Tu, Jian Zhang, Qiang Shen, Yujie Cui, Yunwei Gui, Akihiko Chiba. High-temperature ultra-strength of dual-phase Re0.5MoNbW(TaC)0.5 high-entropy alloy matrix composite [J]. J. Mater. Sci. Technol., 2021, 84(0): 1-9. |
[11] | Yang Wang, Shun Zhang, Ruizhi Wu, Nodir Turakhodjaev, Legan Hou, Jinghuai Zhang, Sergey Betsofen. Coarsening kinetics and strengthening mechanisms of core-shell nanoscale precipitates in Al-Li-Yb-Er-Sc-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 197-203. |
[12] | Yujie Chen, Yan Fang, Xiaoqian Fu, Yiping Lu, Sijing Chen, Hongbin Bei, Qian Yu. Origin of strong solid solution strengthening in the CrCoNi-W medium entropy alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 101-107. |
[13] | Yujie Cui, Kenta Aoyagi, Huakang Bian, Yuichiro Hayasaka, Akihiko Chiba. Effects of the aluminum concentration on twin boundary motion in pre-strained magnesium alloys [J]. J. Mater. Sci. Technol., 2021, 73(0): 116-127. |
[14] | Dongdong Dong, Cheng Chang, Hao Wang, Xingchen Yan, Wenyou Ma, Min Liu, Sihao Deng, Julien Gardan, Rodolphe Bolot, Hanlin Liao. Selective laser melting (SLM) of CX stainless steel: Theoretical calculation, process optimization and strengthening mechanism [J]. J. Mater. Sci. Technol., 2021, 73(0): 151-164. |
[15] | Hao Ding, Xiping Cui, Naonao Gao, Yuan Sun, Yuanyuan Zhang, Lujun Huang, Lin Geng. Fabrication of (TiB/Ti)-TiAl composites with a controlled laminated architecture and enhanced mechanical properties [J]. J. Mater. Sci. Technol., 2021, 62(0): 221-23. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||