J. Mater. Sci. Technol. ›› 2021, Vol. 84: 97-104.DOI: 10.1016/j.jmst.2020.12.038
• Research Article • Previous Articles Next Articles
Jianping Laia,1, Wen Hua,1, Amit Datyeb,*(), Jingbei Liub, Jan Schroersb, Udo D. Schwarzb,c, Jiaxin Yua,*(
)
Received:
2020-11-04
Revised:
2020-12-13
Accepted:
2020-12-21
Published:
2021-09-10
Online:
2021-01-30
Contact:
Amit Datye,Jiaxin Yu
About author:
yujiaxin@swust.edu.cn (J. Yu).1Jianping Lai and Wen Hu contributed equally to this work.
Jianping Lai, Wen Hu, Amit Datye, Jingbei Liu, Jan Schroers, Udo D. Schwarz, Jiaxin Yu. Revealing the relationships between alloy structure, composition and plastic deformation in a ternary alloy system by a combinatorial approach[J]. J. Mater. Sci. Technol., 2021, 84: 97-104.
Fig. 1. (a) Schematic illustration of the magnetron setup for the co-sputtering of the Pd-W-Si alloy library; (b) The appearance of the fabricated thin-film Pd-W-Si alloy library on the silicon substrate, in which there are 672 patches of ≈3 mm in diameter, with each patch containing one individual alloy composition.
Fig. 2. The compositional distribution of (a) Pd, (b) W, and (c) Si across the sputtered wafer, as measured by EDX; (d) XRD analysis of the combinatorially sputtered wafer exposing the phase of each patch.
Fig. 3. The dependence of (a) Er, (b) H, (c) Er2/H, and (d) Wp/Wt on the elemental composition of Pd-W-Si alloys, respectively. The dotted lines mark the boundary between amorphous and crystalline patches.
Fig. 4. The ‘plasticity parameters' Er2/H (a, b) and Wp/Wt (c, d) plotted as a function of Pd and Si concentrations in amorphous and crystalline patches of the Pd-W-Si alloy library, respectively.
Fig. 5. (a) The reduced elastic modulus Er as a function of the Pd and Si concentrations for the 363 amorphous Pd-W-Si alloys; (b) Er plotted as a function of the concentrations of W and Pd as extracted from the data in (a).
Fig. 6. The proposed atomic model in the ternary Pd-W-Si amorphous alloys: (a) clusters (I) and (b) clusters (II) represent the Si-centered clusters and W-centered clusters in the system respectively; (c) The springs of E1, E2, E3, and E4 represent the bonding strength of Si-Pd, W-Pd, Si-W, and Pd-Pd, respectively; (d) linking (I) and (e) (II) represent predominantly Si-centered clusters and W-centered clusters with a low and medium concentration of W, respectively; (f) linking (III) reflects clusters with a relatively high concentration of W; (g) linking (IV) illustrates a situation where type (I) and type (II) clusters are adhering by solvent-solvent (Pd-Pd) bonding in materials with a high concentration of Pd. The letter “S” in (d), (e), and (f) denotes shell Pd atoms, and the purple dashed circles delineate the clusters.
[1] |
M.M. Trexler, N.N. Thadhani, Prog. Mater. Sci. 55 (2010) 759-839.
DOI URL |
[2] | A. Stukowski, K. Albe, Model. Simul. Mater. Sci. 18 (2010) 2131-2145. |
[3] |
X. Jiang, J.J. Zhao, X. Jiang, Comput. Mater. Sci. 50 (2011) 2287-2290.
DOI URL |
[4] |
J.X. Li, G.B. Shan, J.X. Li, G.B. Shan, K.W. Gao, L.J. Qiao, W.Y. Chu, Mater. Sci. Eng. A 354 (2003) 337-343.
DOI URL |
[5] |
C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Mater. 55 (2007) 4067-4109.
DOI URL |
[6] |
A.S. Argon, Acta Metall. 27 (1979) 47-58.
DOI URL |
[7] |
A.L. Greer, Y.Q. Cheng, E. Ma, Mater. Sci. Eng. R 74 (2013) 71-132.
DOI URL |
[8] |
W.C. Oliver, G.M. Pharr, J. Mater. Res. 7 (1992) 1564-1583.
DOI URL |
[9] |
G.M. Pharr, W.C. Oliver, F.R. Brotzen, J. Mater. Res. 7 (1992) 613-617.
DOI URL |
[10] |
W.C. Oliver, G.M. Pharr, J. Mater. Res. 19 (2004) 3-20.
DOI URL |
[11] |
Y.W. Bao, W. Wang, Y.C. Zhou, Acta Mater. 52 (2004) 5397-5404.
DOI URL |
[12] |
A. Datye, H.T. Lin, Ceram. Int. 43 (2017) 800-809.
DOI URL |
[13] |
Y.T. Cheng, C.M. Cheng, Appl. Phys. Lett. 73 (1998) 614-616.
DOI URL |
[14] |
Y.T. Cheng, C.M. Cheng, Mater. Sci. Eng. R 44 (2004) 91-149.
DOI URL |
[15] |
J. Eckert, J. Das, S. Pauly, C. Duhamel, J. Mater. Res. 22 (2007) 285-301.
DOI URL |
[16] |
Y.H. Liu, Z.H. Hu, Z.G. Suo, L.Z. Hu, L.Y. Feng, X.Q. Gong, Y. Liu, J.C. Zhang, Sci. China Technol. Sci. 62 (2019) 521-545.
DOI URL |
[17] |
S.A. Kube, W.T. Xing, A. Kalidindi, S. Sohn, A. Datye, D. Amram, C.A. Schuh, J. Schroers, Acta Mater. 188 (2020) 40-48.
DOI URL |
[18] |
S.A. Kube, S. Sohn, D. Uhl, A. Datye, A. Mehta, J. Schroers, Acta Mater. 166 (2019) 677-686.
DOI URL |
[19] |
A. Datye, S.A. Kube, D. Verma, J. Schroers, U.D. Schwarz, J. Mater. Chem. B 7 (2019) 5392-5400.
DOI PMID |
[20] |
S.Y. Ding, Y.H. Liu, Y.L. Li, Z. Liu, S. Sohn, F.J. Walker, J. Schroers, Nat. Mater. 13 (2014) 494-500.
DOI URL |
[21] |
M.X. Li, S.F. Zhao, Z. Lu, A. Hirata, P. Wen, H.Y. Bai, M.W. Chen, J. Schroers, Y.H. Liu, W.H. Wang, Nature 569 (2019) 99-103.
DOI URL |
[22] |
V. Schnabel, M. K¨oHler, S. Evertz, J. Gamcova, J. Bednarcik, D. Music, D. Raabe, J.M. Schneider, Acta Mater. 107 (2016) 213-219.
DOI URL |
[23] | K.F. Yao, N. Chen, Sci. China Ser. G-Phys. Mech. Astron. 4 (2008) 414-420. |
[24] |
N. Chen, K.F. Yao, F. Ruan, Y.Q. Yang, Mater. Sci. Eng. A 473 (2008) 274-278.
DOI URL |
[25] |
W.H. Wang, Prog. Mater. Sci. 57 (2012) 487-656.
DOI URL |
[26] | W.H. Wang, J. Appl. Phys. 99 (2006), 1947-1358. |
[27] |
R. Saha, Z.Y. Xue, Y. Huang, W.D. Nix, J. Mech. Phys. Solids 49 (2001) 1997-2014.
DOI URL |
[28] |
R. Saha, W.D. Nix, Acta Mater. 50 (2002) 23-38.
DOI URL |
[29] |
S. Chen, L. Liu, T. Wang, Surf. Coat. Technol. 191 (2005) 25-32.
DOI URL |
[30] |
I.N. Sneddon, Int. J. Eng. Sci. 3 (1965) 47-57.
DOI URL |
[31] |
T. Egami, Y. Waseda, J. Non-Cryst. Solids 64 (1984) 113-134.
DOI URL |
[32] |
D. Pan, A. Inoue, D. Pan, A. Inoue, T. Sakurai, M.W. Chen, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 14769-14772.
DOI PMID |
[33] | D. Pan, Y. Yokoyama, T. Fujita, Y.H. Liu, S. Kohara, A. Inoue, M.W. Chen, Appl. Phys. Lett. 95 (2009) 11-279. |
[34] |
U.F. Kocks, H. Mecking, Prog. Mater. Sci. 48 (2003) 171-273.
DOI URL |
[35] |
Y. Andersson, Chem. Scr. 28 (1988) 125-127.
DOI URL |
[36] |
A. Nylund, J.Ø. Madsen, G. Schroll, J.H. Bowie, R. Records, Acta Chem. Scand. 20 (1966) 2381-2386.
DOI URL |
[37] |
B. Aronsson, A. Nylund, S. Rundqvist, E. Varde, G. Westin, Acta Chem. Scand. 14 (1960) 1011-1018.
DOI URL |
[38] |
J.J. Lewandowski, W.H. Wang, A.L. Greer, Philos. Mag. Lett. 85 (2005) 77-87.
DOI URL |
[39] |
D. Ma, A.D. Stoica, X.L. Wang, Z.P. Lu, B. Clausen, D.W. Brown, Phys. Rev. Lett. 108 (2012), 085501.
DOI URL |
[40] |
W. Zhao, G. Li, Y.Y. Wang, S.D. Feng, L. Qi, M.Z. Ma, R.P. Liu, Mater. Des. 65 (2015) 1048-1052.
DOI URL |
[41] |
W. Zhao, J.L. Cheng, S.D. Feng, G. Li, R.P. Liu, Mater. Lett. 175 (2016) 227-230.
DOI URL |
[42] |
Y.Q. Cheng, E. Ma, Prog. Mater. Sci. 56 (2011) 379-473.
DOI URL |
[43] |
C. Dong, Z.J. Wang, S. Zhang, Y.M. Wang, Int. Mater. Rev. 65 (2019) 286-296.
DOI URL |
[44] |
D.B. Miracle, Acta Mater. 54 (2006) 4317-4336.
DOI URL |
[45] |
H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, E. Ma, Nature 439 (2006) 419-425.
DOI URL |
[46] |
W.H. Wang, Nat. Mater. 11 (2012) 275-276.
DOI PMID |
[47] |
Z.F. Zhao, P. Wen, R.J. Wang, D.Q. Zhao, M.X. Pan, W.H. Wang, J. Mater. Res. 21 (2006) 369-374.
DOI URL |
[1] | D.X. Han, L. Zhao, S.H. Chen, G. Wang, K.C. Chan. Critical transitions in the shape morphing of kirigami metallic glass [J]. J. Mater. Sci. Technol., 2021, 61(0): 204-212. |
[2] | Zhuwei Lv, Chenchen Yuan, Haibo Ke, Baolong Shen. Defects activation in CoFe-based metallic glasses during creep deformation [J]. J. Mater. Sci. Technol., 2021, 69(0): 42-47. |
[3] | Yinbao Tian, Junqi Shen, Shengsun Hu, Jian Gou, Yan Cui. Effects of cold metal transfer mode on the reaction layer of wire and arc additive-manufactured Ti-6Al-4V/Al-6.25Cu dissimilar alloys [J]. J. Mater. Sci. Technol., 2021, 74(0): 35-45. |
[4] | C.C. Zhang, H.L. Wei, T.T. Liu, L.Y. Jiang, T. Yang, W.H. Liao. Influences of residual stress and micro-deformation on microstructures and mechanical properties for Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 75(0): 174-183. |
[5] | Weiming Yang, Xinfa Sun, Haishun Liu, Changfeng Yu, Wenyu Li, Akihisa Inoue, Daniel Şopu, Jürgen Eckert, Chunguang Tang. Structural homology of the strength for metallic glasses [J]. J. Mater. Sci. Technol., 2021, 81(0): 123-130. |
[6] | Liang Deng, Long Zhang, Konrad Kosiba, René Limbach, Lothar Wondraczek, Gang Wang, Dongdong Gu, Uta Kühn, Simon Pauly. CuZr-based bulk metallic glass and glass matrix composites fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 81(0): 139-150. |
[7] | Huan Zhang, Yangxin Li, Yuxuan Liu, Qingchun Zhu, Xixi Qi, Gaoming Zhu, Jinhui Wang, Peipeng Jin, Xiaoqin Zeng. The effect of basal <a> dislocation on $\left\{ 11\bar{2}1 \right\}$ twin boundary evolution in a Mg-Gd-Y-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 81(0): 212-218. |
[8] | L. Deng, K. Kosiba, R. Limbach, L. Wondraczek, U. Kühn, S. Pauly. Plastic deformation of a Zr-based bulk metallic glass fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 60(0): 139-146. |
[9] | Xuehao Gao, Xin Lin, Qiaodan Yan, Zihong Wang, Xiaobin Yu, Yinghui Zhou, Yunlong Hu, Weidong Huang. Effect of Cu content on microstructure and mechanical properties of in-situ β phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM) [J]. J. Mater. Sci. Technol., 2021, 67(0): 174-185. |
[10] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[11] | Xu Lu, Dong Wang. Effect of hydrogen on deformation behavior of Alloy 725 revealed by in-situ bi-crystalline micropillar compression test [J]. J. Mater. Sci. Technol., 2021, 67(0): 243-253. |
[12] | S.J. Wu, Z.Q. Liu, R.T. Qu, Z.F. Zhang. Designing metallic glasses with optimal combinations of glass-forming ability and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 67(0): 254-264. |
[13] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
[14] | Zenan Ma, Jiawei Li, Jijun Zhang, Aina He, Yaqiang Dong, Guoguo Tan, Mingqiang Ning, Qikui Man, Xincai Liu. Ultrathin, flexible, and high-strength Ni/Cu/metallic glass/Cu/Ni composite with alternate magneto-electric structures for electromagnetic shielding [J]. J. Mater. Sci. Technol., 2021, 81(0): 43-50. |
[15] | C.J. Barr, K. Xia. Grain refinement in low SFE and particle-containing nickel aluminium bronze during severe plastic deformation at elevated temperatures [J]. J. Mater. Sci. Technol., 2021, 82(0): 57-68. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||