J. Mater. Sci. Technol. ›› 2021, Vol. 83: 256-263.DOI: 10.1016/j.jmst.2020.12.053
• Research Article • Previous Articles
Kun Qiana,*(), Qifan Lia, Alexander Sokolova, Chengju Yua, Piotr Kulika, Ogheneyunume Fitchorovab, Yajie Chenc, Chins Chinnasamyd, Vincent G. Harrisa
Received:
2020-08-19
Revised:
2020-11-25
Accepted:
2020-12-10
Published:
2021-01-30
Online:
2021-01-30
Contact:
Kun Qian
About author:
* E-mail address: qian.kun1@northeastern.edu (K. Qian).Kun Qian, Qifan Li, Alexander Sokolov, Chengju Yu, Piotr Kulik, Ogheneyunume Fitchorova, Yajie Chen, Chins Chinnasamy, Vincent G. Harris. Electromagnetic shielding effectiveness of amorphous metallic spheroidal- and flake-based magnetodielectric composites[J]. J. Mater. Sci. Technol., 2021, 83: 256-263.
Fig. 1. SEM images of (a) the starting amorphous gas atomized FeSi-based powders, (b, c) flakes milled for 14 h (see text for details), (d) milled flakes after an anneal at 400 °C for 1 h in flowing Ar gas, (e) sieved flakes with effective diameters <25 μm, and (f) sieved flakes with effective diameters >45 μm.
Fig. 2. (a) XRD patterns of gas atomized FeSi-based powders (green), powders milled for 14 h (see text for details) (red), and those in red after annealing at 400 °C for 1 h in Ar gas (black). (b) DC conductivity measured for spheroidal- and flake-based composites.
Fig. 3. Hysteresis loops of gas atomized FeSi-based powder and flakes milled for 14 h with annealing in an Ar gas using different conditions. The inset plot shows an expanded view of the zero-crossing region with an applied field from -2000 to 2000 A/m.
Samples | Bs (T) | Hc (A/m) |
---|---|---|
Gas atomized spherical powder | 1.49 | 160 |
As-milled flakes for 14 h | 1.37 | 1141.7 |
Flakes post-annealed at 380 °C for 3 h at 2 °C/min | 1.47 | 530 |
Flakes post-annealed at 380 °C for 10 h at 2 °C/min | 1.49 | 539.9 |
Flakes post-annealed at 400 °C for 1 h at 5 °C/min | 1.53 | 386.3 |
Flakes post-annealed at 430 °C for 1 h at 5 °C/min | 1.49 | 588.4 |
Table 1 DC magnetic properties of amorphous FeSi-based particles.
Samples | Bs (T) | Hc (A/m) |
---|---|---|
Gas atomized spherical powder | 1.49 | 160 |
As-milled flakes for 14 h | 1.37 | 1141.7 |
Flakes post-annealed at 380 °C for 3 h at 2 °C/min | 1.47 | 530 |
Flakes post-annealed at 380 °C for 10 h at 2 °C/min | 1.49 | 539.9 |
Flakes post-annealed at 400 °C for 1 h at 5 °C/min | 1.53 | 386.3 |
Flakes post-annealed at 430 °C for 1 h at 5 °C/min | 1.49 | 588.4 |
Fig. 4. Real (a) and imaginary (b) parts of the complex permeability μ, the real (c) and imaginary (d) parts of the complex permittivity ε for FeSi-based gas atomized powders and high aspect ratio flakes obtained after ball milling said powders for 14 h followed by anneal and loading in paraffin measured over the frequency range of 0.1-18 GHz. Several samples are measured reflecting different loading volume fractions.
Fig. 5. EMI shielding properties (reflection loss RL and shielding effectiveness SE) of amorphous FeSi-based fillers suspended in a paraffin wax matrix with various shape, aspect ratios, loading factors and thicknesses over the frequency range of 0.1-18 GHz.
Shield filler | Matrix | Volume fraction (vol.%) | Thickness (mm) | Minimum SE value (-dB) | Minimum RL value (-dB) | Minimum peak position (GHz) | Frequency range (GHz) (RL < -20 dB) | ΔWRL = -20 dB (GHz) | Refs. |
---|---|---|---|---|---|---|---|---|---|
15 μm amorphous spherical FeSi-based powder | Paraffin wax | 30 | 2 | 9.93 | 53.4 | 12.7 | 8.62-17.59 | 8.97 | This work |
2.5 | 8.42 | 60.4 | 9.53 | 6.28-13.01 | 6.73 | ||||
3 | - | 83.7 | 7.37 | 4.92-10.41 | 5.49 | ||||
40 | 2 | 10.05 | 32.03 | 10.16 | 6.55-16.04 | 9.49 | |||
2.5 | - | 38.76 | 7.75 | 4.64-11.85 | 7.21 | ||||
3 | - | 49.66 | 5.9 | 3.64-9.24 | 5.6 | ||||
50 | 2 | 13.49 | 24.26 | 5.16 | 4.12-9.09 | 4.97 | |||
2.5 | 16.63 | 31.9 | 4.33 | 2.91-6.91 | 4 | ||||
3 | - | 38.47 | 3.45 | 2.3-5.54 | 3.24 | ||||
Amorphous FeSi-based flakes with length >45 μm and thickness under 1 μma | Paraffin wax | 30 | 2.5 | 32.75 | 21.56 | 1.71 | 1.51-1.98 | 0.47 | |
3 | - | 24.44 | 1.42 | 1.15-1.71 | 0.56 | ||||
40 | 1.61 | 39.7 | - | - | > 0.43b | 17.57 | |||
50 | 1.5 | 18.54 (at 1.75 mm thickness) | 23.48 | 3.65 | 2.82-4.78 | 1.96 | |||
2 | 32.64 | 2.83 | 1.98-4.33 | 2.35 | |||||
2.5 | - | 44.16 | 2.32 | 1.57-3.64 | 2.07 | ||||
3 | - | 62.18 | 1.96 | 1.31-3.06 | 1.75 | ||||
Porous carbon | Paraffin wax | 70 (wt.%) | 2 | - | 42.4 | 8.88 | 8.5-9.2 | 0.7 | [ |
Co / porous carbon | Paraffin wax | 30 (wt.%) | 5 | - | 40 | 4.2 | 4-4.5 | 0.5 | [ |
SiCnws-carbon fiber/ polymer polypyrrole | Paraffin wax | - | 2 | - | 50.19 | 14.2 | 13.2-15.2 | 3 | [ |
Ti3C2Tx nano-sheets | SiO2 nano-powders | 80 (wt.%,) | 22.86 x 10.16 x 1c | 65 | 0.26 (absorption coefficient, 60 wt.%) | 12 | 8-12 | 4 | [ |
BaCoxTixFe12-2xO19 | Paraffin wax | 50 | 7.16 x 3.16 x 1.16c | - | 25 | 32.2 | 30.6-34 | 3.4 | [ |
Table 2 EMI shielding performance of various composites.
Shield filler | Matrix | Volume fraction (vol.%) | Thickness (mm) | Minimum SE value (-dB) | Minimum RL value (-dB) | Minimum peak position (GHz) | Frequency range (GHz) (RL < -20 dB) | ΔWRL = -20 dB (GHz) | Refs. |
---|---|---|---|---|---|---|---|---|---|
15 μm amorphous spherical FeSi-based powder | Paraffin wax | 30 | 2 | 9.93 | 53.4 | 12.7 | 8.62-17.59 | 8.97 | This work |
2.5 | 8.42 | 60.4 | 9.53 | 6.28-13.01 | 6.73 | ||||
3 | - | 83.7 | 7.37 | 4.92-10.41 | 5.49 | ||||
40 | 2 | 10.05 | 32.03 | 10.16 | 6.55-16.04 | 9.49 | |||
2.5 | - | 38.76 | 7.75 | 4.64-11.85 | 7.21 | ||||
3 | - | 49.66 | 5.9 | 3.64-9.24 | 5.6 | ||||
50 | 2 | 13.49 | 24.26 | 5.16 | 4.12-9.09 | 4.97 | |||
2.5 | 16.63 | 31.9 | 4.33 | 2.91-6.91 | 4 | ||||
3 | - | 38.47 | 3.45 | 2.3-5.54 | 3.24 | ||||
Amorphous FeSi-based flakes with length >45 μm and thickness under 1 μma | Paraffin wax | 30 | 2.5 | 32.75 | 21.56 | 1.71 | 1.51-1.98 | 0.47 | |
3 | - | 24.44 | 1.42 | 1.15-1.71 | 0.56 | ||||
40 | 1.61 | 39.7 | - | - | > 0.43b | 17.57 | |||
50 | 1.5 | 18.54 (at 1.75 mm thickness) | 23.48 | 3.65 | 2.82-4.78 | 1.96 | |||
2 | 32.64 | 2.83 | 1.98-4.33 | 2.35 | |||||
2.5 | - | 44.16 | 2.32 | 1.57-3.64 | 2.07 | ||||
3 | - | 62.18 | 1.96 | 1.31-3.06 | 1.75 | ||||
Porous carbon | Paraffin wax | 70 (wt.%) | 2 | - | 42.4 | 8.88 | 8.5-9.2 | 0.7 | [ |
Co / porous carbon | Paraffin wax | 30 (wt.%) | 5 | - | 40 | 4.2 | 4-4.5 | 0.5 | [ |
SiCnws-carbon fiber/ polymer polypyrrole | Paraffin wax | - | 2 | - | 50.19 | 14.2 | 13.2-15.2 | 3 | [ |
Ti3C2Tx nano-sheets | SiO2 nano-powders | 80 (wt.%,) | 22.86 x 10.16 x 1c | 65 | 0.26 (absorption coefficient, 60 wt.%) | 12 | 8-12 | 4 | [ |
BaCoxTixFe12-2xO19 | Paraffin wax | 50 | 7.16 x 3.16 x 1.16c | - | 25 | 32.2 | 30.6-34 | 3.4 | [ |
[1] |
M.S. Cao, X.X. Wang, M. Zhang, J.C. Shu, W.Q. Cao, H.J. Yang, X.Y. Fang, J. Yuan, Adv. Funct. Mater. 29 (2019) 1807398.
DOI URL |
[2] |
R.B.J. Chandra, B. Shivamurthy, S.D. Kulkarni, M.S. Kumar, Mater. Res. Express 6 (2019) 082008.
DOI URL |
[3] |
W.Q. Zhang, Y.G. Xu, L.M. Yuan, J. Cai, D.Y. Zhang, J. Mater. Sci. Technol. 28 (2012) 913-919.
DOI URL |
[4] |
M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, Carbon 48 (2010) 788-796.
DOI URL |
[5] |
C. Wang, V. Murugadoss, J. Kong, Z.F. He, X.M. Mai, Q. Shao, Y.J. Chen, L. Guo, C. T. Liu, S. Angaiah, Z.H. Guo, Carbon 140 (2018) 696-733.
DOI URL |
[6] |
Y. Chen, Yl. Wang, H.B. Zhang, X.F. Li, C.X. Gui, Z.Z. Yu, Carbon 82 (2015) 67-76.
DOI URL |
[7] |
L. Wang, X. Shi, J. Zhang, Y. Zhang, J. Gu, J. Mater. Sci. Technol. 52 (2020) 119-126.
DOI |
[8] |
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. Gogotsi, Science 353 (2016) 1137-1140.
DOI PMID |
[9] |
K. Hantanasirisakul, Y. Gogotsi, Adv. Mater 30 (2018) 1804779.
DOI URL |
[10] |
A. Iqbal, P. Sambyal, C.M. Koo, Adv. Funct. Mater. 30 (2020) 2000883.
DOI URL |
[11] |
H.J. Yang, M.S. Cao, Y. Li, H.L. Shi, Z.L. Hou, X.Y. Fang, H.B. Jin, W.Z. Wang, J. Yuan, Adv. Opt. Mater. 2 (2014) 214-219.
DOI URL |
[12] |
R. Han, X.H. Han, L. Qiao, T. Wang, F.S. Li, Mater. Chem. Phys. 128 (2011) 317-322.
DOI URL |
[13] |
P. Kaur, S. Bahel, S.B. Narang, J. Magn. Magn. Mater. 460 (2018) 489-494.
DOI URL |
[14] |
R. Wang, F. He, Y.Z. Wan, Y. Qi, J. Alloys. Compd. 514 (2012) 35-39.
DOI URL |
[15] |
Z. Han, D. Li, H. Wang, X.G. Liu, J. Li, D.Y. Geng, Z.D. Zhang, Appl. Phys. Lett. 95 (2009) 023114.
DOI URL |
[16] | M. Itoh, J.R. Liu, T. Horikawa, K. Machida, J. Alloys. Compd. 408 (2006) 1400-1403. |
[17] |
O. Balci, E.O. Polat, N. Kakenov, C. Kocabas, Nat. Commun. 6 (2015) 6628.
DOI URL |
[18] |
J. Xu, X. Zhang, H.R. Yuan, S. Zhang, C. Zhu, X.T. Zhang, Y.J. Chen, Carbon 159 (2020) 357-365.
DOI URL |
[19] |
X. Qiu, L.X. Wang, Hl. Zhu, Y.K. Guana, Q.T. Zhang, Nanoscale 9 (2017) 7408-7418.
DOI PMID |
[20] |
C.S. Dong, X. Wang, P.H. Zhou, T. Liu, Jl. Xie, L.J. Deng, J. Magn. Magn. Mater. 354 (2014) 340-344.
DOI URL |
[21] |
N. Chen, G.H. Mu, X.F. Pan, K.K. Gan, M.Y. Gu, Mater. Sci. Eng. B 139 (2007) 256-260.
DOI URL |
[22] |
G.X. Tonga, W.H. Wu, J.G. Guan, H.S. Qian, J.H. Yuan, W. Li, J. Alloys. Compd. 509 (2011) 4320-4326.
DOI URL |
[23] |
Y. Chang, Y. Zhang, L. Li, S. Liu, Z. Liu, H. Chang, X. Wang, J. Alloys. Compd. 818 (2020) 152930.
DOI URL |
[24] |
S.Q. Jiao, M.Z. Wu, X.X. Yu, H. Zhang, Adv. Eng. Mater. 22 (2020) 1901299.
DOI URL |
[25] | C. Chinnasamy, S.J. Kernion, J. Scanlon, “Fe-based soft magnetic alloy” WO2018152309 (2018, Aug. 23). |
[26] | Q. Li, Y. Chen, C. Caisse, A. Horn, V. Harris, A Position-Independent Approach to Accurate Measurement of Broadband Electromagnetic Constitutive Parameters of Magnetodielectric Materials, IEEE Trans. Microw. Theory Techn. 68 (2020) 4940-4950. |
[27] |
C.J. Yu, A.S. Sokolov, P. Kulik, V.G. Harris, J. Alloys. Compd. 814 (2020) 152301.
DOI URL |
[28] |
Q.F. Li, Y.J. Chen, V.G. Harris, J. Appl. Phys. 125 (2019) 185107.
DOI URL |
[29] | K. Qian, A.S. Sokolov, Q.F. Li, Q.F. Li, C. Chinnasamy, S.J. Kernion, V.G. Harris, IEEE Magn. Lett. 11 (2020) 1-5. |
[30] |
Q.J. Chen, H.B. Fan, J. Shen, J.F. Sun, Z.P. Lu, J. Alloys. Compd. 407 (2006) 125-128.
DOI URL |
[31] |
R.R. Mohan, S.J. Varma, M. Faisal, S. Jayalekshmi, RSC Adv. 5 (2015) 5917-5923.
DOI URL |
[32] |
D.D.L. Chung, Carbon 39 (2001) 279-285.
DOI URL |
[33] |
R.K. Walser, W. Win, P.M. Valanju, IEEE Trans. Magn. 34 (1998) 1390-1392.
DOI URL |
[34] |
Y.C. Du, W.W. Liu, R. Qiang, Y. Wang, X.J. Han, J. Ma, P. Xu, ACS Appl. Mater. Interfaces 6 (2014) 12997-13006.
DOI URL |
[35] |
H.J. Yang, J. Yuan, Y. Li, Z.L. Hou, H.B. Jin, X.Y. Fang, M.S. Cao, Solid State Commun. 163 (2013) 1-6.
DOI URL |
[36] |
Z.W. Li, L.B. Kong, Z.H. Yang, J. Appl. Phys. 105 (2009) 113912.
DOI URL |
[37] |
Y. Naito, K. Suetake, IEEE Trans. Microw. Theory Tech. 19 (1971) 65-72.
DOI URL |
[38] |
Q.L. Liu, D. Zhang, T.X. Fan, Appl. Phys. Lett. 93 (2008) 013110.
DOI URL |
[39] |
L.W. Yan, C.Q. Hong, B.Q. Sun, G.D. Zhao, Y.H. Cheng, S. Dong, D.Y. Zhang, X.H. Zhang, ACS Appl. Mater. Interfaces 9 (2017) 6320-6331.
DOI URL |
[40] |
P. He, X.X. Wang, Y.Z. Cai, J.C. Shu, Q.L. Zhao, J. Yuan, M.S. Cao, Nanoscale 11 (2019) 6080-6088.
DOI URL |
[41] |
X.X. Wang, J.C. Shu, W.Q. Cao, M. Zhang, J. Yuan, M.S. Cao, Chem. Eng. J. 369 (2019) 1068-1077.
DOI URL |
[42] |
M.L. Yang, W. Qiang, J.J. Li, Y. Wang, H.F. Guo, L.Y. Gao, L. Huang, X.D. He, Y.B. Li, Y. Yuan, Adv. Mater. Interfaces 7 (2020) 1901815.
DOI URL |
[43] |
Y. Yuan, Y.J. Ding, C.H. Wang, F. Xu, Z.S. Lin, Y.Y. Qin, Y. Li, M.L. Yang, X.D. He, Q.Y. Peng, Y.B. Li, ACS Appl. Mater. Interfaces 8 (2016) 16852-16861.
DOI URL |
[44] |
P. Kulik, G. Winter, A. Sokolov, K. Murphy, C. Yu, K. Qian, O. Fitchorova, V. Harris, Appl. Phys. Lett. 116 (2020) 202404.
DOI URL |
[1] | Xiankai Fu, Bo Yang, Wanqi Chen, Zongbin Li, Haile Yan, Xiang Zhao, Liang Zuo. Electromagnetic wave absorption performance of Ti2O3 and vacancy enhancement effective bandwidth [J]. J. Mater. Sci. Technol., 2021, 76(0): 166-173. |
[2] | Wang Yang, Bo Jiang, Zhihui Liu, Rui Li, Liqiang Hou, Zhengxuan Li, Yongli Duan, Xingru Yan, Fan Yang, Yongfeng Li. Magnetic coupling engineered porous dielectric carbon within ultralow filler loading toward tunable and high-performance microwave absorption [J]. J. Mater. Sci. Technol., 2021, 70(0): 214-223. |
[3] | Yanchun Zhou, Biao Zhao, Heng Chen, Huimin Xiang, Fu-Zi Dai, Shijiang Wu, Wei Xu. Electromagnetic wave absorbing properties of TMCs (TM=Ti, Zr, Hf, Nb and Ta) and high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C [J]. J. Mater. Sci. Technol., 2021, 74(0): 105-118. |
[4] | Liyuan Han, Qiang Song, Kezhi Li, Xuemin Yin, Jiajia Sun, Hejun Li, Fengpei Zhang, Xinran Ren, Xi Wang. Hierarchical, seamless, edge-rich nanocarbon hybrid foams for highly efficient electromagnetic-interference shielding [J]. J. Mater. Sci. Technol., 2021, 72(0): 154-161. |
[5] | Minghang Li, Xiaomeng Fan, Hailong Xu, Fang Ye, Jimei Xue, Xiaoqiang Li, Laifei Cheng. Controllable synthesis of mesoporous carbon hollow microsphere twined by CNT for enhanced microwave absorption performance [J]. J. Mater. Sci. Technol., 2020, 59(0): 164-172. |
[6] | Peng Wang, Junming Zhang, Guowu Wang, Benfang Duan, Donglin He, Tao Wang, Fashen Li. Synthesis and characterization of MoS2/Fe@Fe3O4 nanocomposites exhibiting enhanced microwave absorption performance at normal and oblique incidences [J]. J. Mater. Sci. Technol., 2019, 35(9): 1931-1939. |
[7] | Wei Zhou, Lan Long, Yang Li. Mechanical and electromagnetic wave absorption properties of Cf-Si3N4 ceramics with PyC/SiC interphases [J]. J. Mater. Sci. Technol., 2019, 35(12): 2809-2813. |
[8] | Li Wanchong, Li Chusen, Lin Lihai, Wang Yan, Zhang Jinsong. Foam structure to improve microwave absorption properties of silicon carbide/carbon material [J]. J. Mater. Sci. Technol., 2019, 35(11): 2658-2664. |
[9] | Xuan Hao, Xiaowei Yin, Litong Zhang, Laifei Cheng. Dielectric, Electromagnetic Interference Shielding and Absorption Properties of Si3N4-PyC Composite Ceramics [J]. J. Mater. Sci. Technol., 2013, 29(3): 249-254. |
[10] | Zhigao Xie, Dianyu Geng, Xianguo Liu, Song Ma, Zhidong Zhang. Magnetic and Microwave-absorption Properties of Graphite-coated (Fe, Ni) Nanocapsules [J]. J Mater Sci Technol, 2011, 27(7): 607-614. |
[11] | Yuchang Qing, Wancheng Zhou, Shu Jia, Fa Luo, Dongmei Zhu. Effect of Heat Treatment on the Microwave Electromagnetic Properties of Carbonyl Iron/Epoxy-Silicone Resin Coatings [J]. J Mater Sci Technol, 2010, 26(11): 1011-1015. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||