J. Mater. Sci. Technol. ›› 2021, Vol. 77: 100-107.DOI: 10.1016/j.jmst.2020.10.045
• Research Article • Previous Articles Next Articles
Jiajia Yea, Xuting Lia, Guang Xiaa, Guanghao Gonga, Zhiqiang Zhenga, Chuanzhong Chena,b,c,*(
), Cheng Hua,b,c,*(
)
Received:2020-07-20
Revised:2020-10-06
Accepted:2020-10-08
Published:2021-06-30
Online:2020-11-22
Contact:
Chuanzhong Chen,Cheng Hu
About author:c.hu@sdu.edu.cn (C. Hu).Jiajia Ye, Xuting Li, Guang Xia, Guanghao Gong, Zhiqiang Zheng, Chuanzhong Chen, Cheng Hu. P-doped CoSe2 nanoparticles embedded in 3D honeycomb-like carbon network for long cycle-life Na-ion batteries[J]. J. Mater. Sci. Technol., 2021, 77: 100-107.
Fig. 1. (a) Schematic illustration of the synthesis route of the P-CoSe2(2:1)/C composite. (b) SEM image of the P-CoSe2(2:1)/C composite. (c) XRD patterns of the Co/C, CoSe2/C and P-CoSe2(2:1)/C composites. (d) XRD patterns of the CoSe2/C and P-CoSe2(2:1)/C composites showing the shifts of diffraction peaks induced by P-doping.
Fig. 2. (a) TEM and (b) HRTEM images of the P-CoSe2(2:1)/C composite. (c) HAADF image of the P-CoSe2(2:1)/C composite and its corresponding EDS elemental mappings of C, Co, P and Se. XPS spectra of the CoSe2/C and P-CoSe2(2:1)/C composites: (d) Co 2p, (e) Se 3d and (f) P 2p.
Fig. 3. (a) CV profiles of P-CoSe2(2:1)/C with a scan rate of 0.2?mV s-1. Galvanostatic charge/discharge profiles of (b) CoSe2/C and (c) P-CoSe2(2:1)/C from various cycles at 200?mA g-1. (d) Charge/discharge cycling performance of CoSe2/C, P-CoSe2(1:1)/C, P-CoSe2(2:1)/C, P-CoSe2(3:1)/C and porous C at 200?mA g-1.
Fig. 4. (a) Rate capability of three kinds of P-CoSe2/C samples and porous C. Capacity retention of (b) CoSe2/C and (c) P-CoSe2(2:1)/C anodes at various current densities up to 5000?mA g-1. (d) Charge/discharge cycling performance of CoSe2/C, porous C and P-CoSe2/C at 2000?mA g-1. (e) Nyquist plots and (f) corresponding Z′-ω1/2 curves of CoSe2/C and P-CoSe2(2:1)/C anodes before and after the rating test. (g) GITT potential profiles and (h) calculated Na-ion diffusion coefficients of P-CoSe2(2:1)/C and CoSe2/C during the discharge and charge processes at 100?mA g-1.
Fig. 5. (a) CV profiles at different scan rates and (b) logi versus logv plots of P-CoSe2(2:1)/C. (c) Capacitive contribution (red) to the total current of P-CoSe2(2:1)/C at the scan rate of 0.2?mV s-1 shown in the CV profile and (d) the contribution ratios at various scan rates up to 2.0?mV s-1.
| [1] |
M. Yousaf, Y. Chen, H. Tabassum, Z. Wang, Y. Wang, A.Y. Abid, A. Mahmood, N. Mahmood, S. Guo, R.P.S. Han, P. Gao, Adv. Sci. 7 (2020), 1902907.
DOI URL |
| [2] |
Z. Sang, X. Yan, D. Su, H. Ji, S. Wang, S.X. Dou, J. Liang, Small 16 (2020), 2001265.
DOI URL |
| [3] |
L. Wu, J.O. Yang, S. Guo, L. Yao, H. Li, S. Zhang, H. Yue, K. Cai, C. Zhang, C. Yang, Y. Cao, Adv. Funct. Mater. 30 (2020), 2001718.
DOI URL |
| [4] |
Y. Xiao, X. Zhao, X. Wang, D. Su, S. Bai, W. Chen, S. Fang, L. Zhou, H.M. Cheng, F. Li, Adv. Energy Mater. 10 (2020), 2000666.
DOI URL |
| [5] |
L. Guan, H. Hu, L. Li, Y. Pan, Y. Zhu, Q. Li, H. Guo, K. Wang, Y. Huang, M. Zhang, Y. Yan, Z. Li, X. Teng, J. Yang, J. Xiao, Y. Zhang, X. Wang, M. Wu, ACS Nano 14 (2020) 6222-6231.
DOI URL PMID |
| [6] |
X. Yang, A.L. Rogach, Adv. Energy Mater. 10 (2020), 2000288.
DOI URL |
| [7] |
Y. Zhang, A. Pan, L. Ding, Z. Zhou, Y. Wang, S. Niu, S. Liang, G. Cao, ACS Appl. Mater. Interface 9 (2017) 3624-3633.
DOI URL |
| [8] |
K. Zhang, Z. Hu, X. Liu, Z. Tao, J. Chen, Adv. Mater. 27 (2015) 3305-3309.
DOI URL |
| [9] |
J.S. Cho, S.Y. Lee, Y.C. Kang, Sci. Rep. 6 (2016) 1-10.
DOI URL |
| [10] |
S.K. Park, J.K. Kim, Y.K. Chan, Chem. Eng. J. 328 (2017) 546-555.
DOI URL |
| [11] |
Y. Fang, X.Y. Yu, X. Lou, Adv. Mater. 30 (2018), 1706668.
DOI URL |
| [12] |
H. Zhang, T. Wang, A. Sumboja, W. Zang, J. Xie, D. Gao, S.J. Pennycook, Z. Liu, C. Guan, J. Wang, Adv. Funct. Mater. 28 (2018), 1804846.
DOI URL |
| [13] |
S. Park, Y.C. Kang, ACS Appl. Mater. Interfaces 10 (2018) 17203-17213.
DOI URL |
| [14] | J. Wang, H. Wang, D. Cao, X. Lu, X. Han, C. Niu, Particle Particle Systems Charct. 34 (2017), 1700185. |
| [15] |
X. Ma, L. Zou, W. Zhao, Chem. Commun. (Camb.) 54 (2018) 10507-10510.
DOI URL |
| [16] |
H. Tabassum, C. Zhi, T. Hussain, T. Qiu, W. Aftab, R. Zou, Adv. Energy Mater. 9 (2019), 1901778.
DOI URL |
| [17] |
H. Yin, H. Qu, Z. Liu, R. Jiang, C. Li, M. Zhu, Nano Energy 58 (2019) 715-723.
DOI URL |
| [18] |
B. Li, Y. Liu, X. Jin, S. Jiao, G. Wang, B. Peng, S. Zeng, L. Shi, J. Li, G. Zhang, Small 15 (2019), 1902881.
DOI URL |
| [19] |
J. Yang, H. Gao, S. Men, Z. Shi, Z. Lin, X. Kang, S. Chen, Adv. Sci. 5 (2018), 1800763.
DOI URL PMID |
| [20] |
A.V. Neimark, Y. Lin, P.I. Ravikovitch, M. Thommes, Carbon 47 (2009) 1617-1628.
DOI URL |
| [21] |
Z. Wang, H. Liu, R. Ge, X. Ren, J. Ren, D. Yang, L. Zhang, X. Sun, ACS Catal. 8 (2018) 2236-2241.
DOI URL |
| [22] |
J.J. Ye, G. Xia, Z.Q. Zheng, C. Hu, Appl. Surf. Sci. 519 (2020), 146260.
DOI URL |
| [23] |
T. Wang, K. Yang, J. Shi, S. Zhou, L. Mi, H. Li, W. Chen, J. Energy Chem. 46 (2020) 71-77.
DOI URL |
| [24] | J. Lin, H. Wang, J. Cao, F. He, J. Feng, J. Qi, J. Colloid, Interface Sci. 571 (2020) 260-266. |
| [25] |
L. Huang, H. Wu, Y. Zhang, Electrochim. Acta 331 (2020), 135362.
DOI URL |
| [26] |
W. Song, Y. Zhang, A. Varyambath, I. Kim, ACS Nano 13 (2019) 11753-11769.
DOI URL |
| [27] |
W. Song, Y. Zhang, A. Varyambath, J.S. Kim, I. Kim, Green Chem. 22 (2020) 3572-3583.
DOI URL |
| [28] |
K. Guo, B. Xi, R. Wei, H. Li, J. Feng, S. Xiong, Adv. Energy Mater. 10 (2020), 1902913.
DOI URL |
| [29] |
B. Zhao, Q. Liu, G. Wei, J. Wang, X. Yu, X. Li, H.B. Wu, Chem. Eng. J. 378 (2019), 122206.
DOI URL |
| [30] |
J. Tian, J. Li, Y. Zhang, X. Yu, Z. Hong, J. Mater. Chem. A Mater. Energy Sustain. 7 (2019) 21404-21409.
DOI URL |
| [31] |
C. Cui, Z.X. Wei, G. Zhou, W.F. Wei, J.M. Ma, L.B. Chen, C.C. Li, J. Mater. Chem. A Mater. Energy Sustain. 6 (2018) 7088-7098.
DOI URL |
| [32] |
Y.J. Zhang, X. Li, P. Dong, G. Wu, J. Xiao, X.Y. Zeng, Y.J. Zhang, X.L. Sun, ACS Appl. Mater. Interfaces 10 (2018) 42796-42803.
DOI URL |
| [33] |
X. Ge, Z. Li, L. Yin, Nano Energy 32 (2017) 117-124.
DOI URL |
| [34] |
H.R. Wan, X.F. Hu, J. Colloid Interface Sci. 558 (2020) 242-250.
DOI URL |
| [35] |
P.Y. Wang, X.X. Lu, Y. Boyjoo, X.R. Wei, Y.H. Zhang, D.J. Guo, S.M. Sun, J. Liu, J. Power Sources 451 (2020) 227756.
DOI URL |
| [36] |
L. Wang, Z. Han, Q. Zhao, X. Yao, Y. Zhu, X. Ma, S. Wu, C. Cao, J. Mater. Chem. A Mater. Energy Sustain. 8 (2020) 8612-8619.
DOI URL |
| [37] |
D. Xie, W. Tang, Y. Wang, X. Xia, Y. Zhong, D. Zhou, D. Wang, X. Wang, J. Tu, Nano Res. 9 (2016) 1618-1629.
DOI URL |
| [38] | L. Wang, J. Zou, S. Chen, G. Zhou, J. Bai, P. Gao, Y. Wang, X. Yu, J. Li, Y. Hu, H. Li, Energy Stor. Mater. 12 (2018) 216-222. |
| [39] |
J. Wang, J. Polleux, J. Lim, B. Dunn, J. Phys. Chem. C 111 (2007) 14925-14931.
DOI URL |
| [40] |
J. Ye, G. Xia, Z. Zheng, C. Hu, Int. J. Hydrog. Energy 45 (2020) 9969-9978.
DOI URL |
| [41] |
J. Li, D. Yan, T. Lu, Y. Yao, L. Pan, Chem. Eng. J. 325 (2017) 14-24.
DOI URL |
| [42] |
Y. Zhao, J. Zhu, S.J.H. Ong, Q. Yao, X. Shi, K. Hou, Z.J. Xu, L. Guan, Adv. Energy Mater. 8 (2018), 1802565.
DOI URL |
| [43] |
P. Ge, H. Hou, S. Li, L. Huang, X. Ji, ACS Appl. Mater. Interface 10 (2018) 14716-14726.
DOI URL |
| [44] |
D. Li, Q. Sun, Y. Zhang, L. Chen, Z. Wang, Z. Liang, P. Si, L. Ci, Chemsuschem 12 (2019) 2689-2700.
DOI URL |
| [45] | P. Liu, J. Han, K. Zhu, Z. Dong, L. Jiao, Adv. Energy Mater. 10 (2020), 200741. |
| [46] |
Q. Liu, J.G. Houb, C.X. Xu, Z.Z. Chen, R. Qin, H. Liu, Chem. Eng. J. 381 (2020), 122649.
DOI URL |
| [1] | Chuan Wang, Hai Long, Lijiao Zhou, Chao Shen, Wei Tang, Xiaodong Wang, Bingbing Tian, Le Shao, Zhanyuan Tian, Haijun Su, Keyu Xie. A multiphase sodium vanadium phosphate cathode material for high-rate sodium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 66(0): 121-127. |
| [2] | Thanh-Tung Le, Xiao Liu, Peijun Xin, Qing Wang, Chunyan Gao, Ye Wu, Yong Jiang, Zhangjun Hu, Shoushuang Huang, Zhiwen Chen. Phosphorus-doped Fe7S8@C nanowires for efficient electrochemical hydrogen and oxygen evolutions: Controlled synthesis and electronic modulation on active sites [J]. J. Mater. Sci. Technol., 2021, 74(0): 168-175. |
| [3] | Shi Tao, Wei Zhou, Dajun Wu, Zhicheng Wang, Bin Qian, Wangsheng Chu, Augusto Marcelli, Li Song. Insights into the Ti4+ doping in P2-type Na0.67Ni0.33Mn0.52Ti0.15O2 for enhanced performance of sodium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 230-236. |
| [4] | Wei Wu, Yongshan Wei, Hongjiang Chen, Keyan Wei, Zhitong Li, Jianhui He, Libo Deng, Lei Yao, Haitao Yang. In-situ encapsulation of α-Fe2O3 nanoparticles into ZnFe2O4 micro-sized capsules as high-performance lithium-ion battery anodes [J]. J. Mater. Sci. Technol., 2021, 75(0): 110-117. |
| [5] | Juyan Zhang, Xuhui Yao, Ravi K. Misra, Qiong Cai, Yunlong Zhao. Progress in electrolytes for beyond-lithium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 44(0): 237-257. |
| [6] | Xiaohui Rong, Fei Gao, Feixiang Ding, Yaxiang Lu, Kai Yang, Hong Li, Xuejie Huang, Liquan Chen, Yong-Sheng Hu. Triple effects of Sn-substitution on Na0.67Ni0.33Mn0.67O2 [J]. J. Mater. Sci. Technol., 2019, 35(7): 1250-1254. |
| [7] | Fengren Cao, Wei Tian, Liang Li. Ternary non-noble metal zinc-nickel-cobalt carbonate hydroxide cocatalysts toward highly efficient photoelectrochemical water splitting [J]. J. Mater. Sci. Technol., 2018, 34(6): 899-904. |
| [8] | Jiangang Zhang, Yunpeng Wei, Guangjian Jin, Gang Wei. Active Stainless Steel/SnO2-CeO2 Anodes for Pollutants Oxidation Prepared by Thermal Decomposition [J]. J Mater Sci Technol, 2010, 26(2): 187-192. |
| [9] | Li Liu Ying Li Fuhui Wang. Electrochemical Corrosion Behavior of Nanocrystalline Materials---a Review [J]. J Mater Sci Technol, 2010, 26(1): 1-14. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
