J. Mater. Sci. Technol. ›› 2021, Vol. 75: 184-195.DOI: 10.1016/j.jmst.2020.10.040
• Research Article • Previous Articles Next Articles
Longqing Tanga,1, Guowei Boa,1, Fulin Jianga,*(), Shiwei Xua,b,*(
), Jie Tenga, Dingfa Fua, Hui Zhanga,*(
)
Received:
2020-08-27
Revised:
2020-10-06
Accepted:
2020-10-20
Published:
2021-06-10
Online:
2020-11-01
Contact:
Fulin Jiang,Shiwei Xu,Hui Zhang
About author:
zhanghui63@hnu.edu.cn (H. Zhang).1The authors contribute equally to this work.
Longqing Tang, Guowei Bo, Fulin Jiang, Shiwei Xu, Jie Teng, Dingfa Fu, Hui Zhang. Unravelling the precipitation evolutions of AZ80 magnesium alloy during non-isothermal and isothermal processes[J]. J. Mater. Sci. Technol., 2021, 75: 184-195.
Fig. 1. Schematic illustration for the experiments during (a) & (b) non-isothermal (continuous heating or cooling) and (c) isothermal processes; (d) the sketch of in situ electrical resistivity measurement.
Fig. 3. Micro-hardness evolutions and selected engineering stress-strain curves of AZ80 magnesium alloy during (a) & (c) non-isothermal and (b) & (d) isothermal processes.
Fig. 5. SEM micrographs of selected quenched specimens during continuous heating process: (a) solid solution; (b) 200 °C of 2 °C/min; (c) and (g) 300 °C of 2 °C/min; (d) 450 °C of 2 °C/min; (e) 200 °C of 10 °C/min; (f) 300 °C of 10 °C/min and (h) EDS of the particle A in solid solution specimen (a).
Fig. 6. SEM micrographs of selected quenched specimens during continuous cooling process: (a) 350 °C; (b) 250 °C; (c) and (f) 150 °C; (d) and (e) room temperature.
Fig. 7. TEM micrographs of AZ80 Magnesium Alloy under different non-isothermal conditions: (a)-(c) 200 °C of 2 °C/min; (d)-(f) 300 °C of 2 °C/min; (g)-(j) cooling to 200 °C.
Fig. 11. TEM micrographs of AZ80 magnesium alloy during isothermal processes : (a) & (b) 200 °C/10,000 s; (c) & (d) 200 °C/100,000 s; (e) & (f) 300 °C/100,000 s.
Fig. 12. Quantitative estimation of precipitation evolution in AZ80 magnesium alloy: (a) the mass fractions of β-Mg17Al12 precipitates calculated from Thermo-Calc software and electrical resistivity results at holding time of 105 s under various temperatures; (b) comparison of the volume fraction of precipitate from electrical resistivity and SEM micrographs during isothermal processes.
Fig. 13. Summaries of the precipitate characteristics based on in situ electrical resistivity results and microstructural observations under (a) non-isothermal processes and (b) isothermal processes.
[1] |
J.F. Song, J. She, D.L. Chen, F.S. Pan, J. Magnesium Alloys 8 (2020) 1-41.
DOI URL |
[2] |
U.M. Chaudry, K. Hamad, J.G. Kim, J. Alloys Compd. 792 (2019) 652-664.
DOI URL |
[3] |
B.L. Mordike, T. Ebert, Mater. Sci. Eng. A 302 (2001) 37-45.
DOI URL |
[4] |
H.G. Liu, F.Y. Cao, G.L. Song, D.J. Zheng, Z.M. Shi, M.S. Dargusch, A. Atrens, J. Mater. Sci. Technol. 35 (2019) 2003-2016.
DOI URL |
[5] |
L.W. Zheng, H.H. Nie, W. Liang, H.X. Wang, Y.D. Wang, J. Magnesium Alloys 4 (2016) 115-122.
DOI URL |
[6] |
J.D. Robson, N. Stanford, M.R. Barnett, Acta Mater. 59 (2011) 1945-1956.
DOI URL |
[7] |
W. Fu, R. Wang, J. Zhang, K. Wu, G. Liu, J. Sun, Mater. Sci. Eng. A 720 (2018) 98-109.
DOI URL |
[8] |
C.L. Lv, T.M. Liu, D.J. Liu, S. Jiang, W. Zeng, Mater. Des. 33 (2012) 529-533.
DOI URL |
[9] |
Y. Uematsu, K. Tokaji, M. Matsumoto, Mater. Sci. Eng. A 517 (2009) 138-145.
DOI URL |
[10] |
B.W. Zhu, X. Liu, C. Xie, J. Su, P.C. Guo, C.P. Tang, W.H. Liu, J. Mater. Sci. Technol. 50 (2020) 59-65.
DOI URL |
[11] |
G. Song, A.L. Bowles, D.H. Stjohn, Mater. Sci. Eng. A 366 (2004) 74-86.
DOI URL |
[12] |
O. Lunder, J. Lein, T.K. Aune, K. Nisancioglu, Corrosion 45 (1989) 741-748.
DOI URL |
[13] |
E. Tolouie, R. Jamaati, Mater. Sci. Eng. A 738 (2018) 81-89.
DOI URL |
[14] |
C.J. Yan, Y.C. Xin, C. Wang, H. Liu, Q. Liu, J. Mater. Sci. Technol. 52 (2020) 89-99.
DOI URL |
[15] |
X. Li, F. Jiao, T. Al-Samman, S.G. Chowdhury, Scr. Mater. 66 (2012) 159-162.
DOI URL |
[16] |
Z.R. Zeng, Y.M. Zhu, R.L. Liu, S.W. Xu, C.H.J. Davies, J.F. Nie, N. Birbilis, Acta Mater. 160 (2018) 97-108.
DOI URL |
[17] | X.Y. Wang, Y.F. Wang, C. Wang, S. Xu, J. Rong, Z.Z. Yang, J.G. Wang, H.Y. Wang, J. Mater, Sci. Technol. 49 (2020) 117-125. |
[18] |
L.P. Zhong, Y.J. Wang, Y.C. Dou, J. Magnesium Alloys 7 (2019) 637-647.
DOI URL |
[19] |
H. Yu, S.H. Park, B.S. You, Mater. Sci. Eng. A 610 (2014) 445-449.
DOI URL |
[20] |
F. Guo, D.F. Zhang, X.S. Yang, L.Y. Jiang, F.S. Pan, Mater. Sci. Eng. A 636 (2015) 516-521.
DOI URL |
[21] |
J.M. Jiang, M. Song, H.G. Yan, C. Yang, S. Ni, Mater. Charact. 121 (2016) 135-138.
DOI URL |
[22] |
L. Luo, Z.Y. Xiao, Q.H. Huo, Y. Yang, W.Y. Huang, J.C. Guo, Y.X. Ye, X.Y. Yang, J. Alloys Compd. 740 (2018) 180-193.
DOI URL |
[23] |
M.X. Zhang, P. Kelly, Scr. Mater. 48 (2003) 647-652.
DOI URL |
[24] | D. Duly, J. Simon, Y. Brechet, Acta Mater. 43 (1995) 101-106. |
[25] |
Y. Liu, J.X. Zhou, D.Q. Zhao, S.Q. Tang, Mater. Charact. 118 (2016) 481-485.
DOI URL |
[26] |
D.G. Zhao, Z.Q. Wang, M. Zuo, H.R. Geng, Mater. Des. 56 (2014) 589-593.
DOI URL |
[27] |
Y. Pang, Q. Li, Int. J. Hydrogen Energy 41 (2016) 18072-18087.
DOI URL |
[28] |
Q. Luo, J. Li, B. Li, B. Liu, H.Y. Shao, Q. Li, J. Magnesium Alloys 7 (2019) 58-71.
DOI URL |
[29] |
Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K.C. Chou, . J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI URL |
[30] |
C.Q. Liu, H.W. Chen, N.C. Wilson, J.F. Nie, Scr. Mater. 163 (2019) 91-95.
DOI URL |
[31] |
L. Jiang, D. Zhang, X. Fan, F. Guo, G. Hu, H. Xue, F. Pan, Mater. Sci. Eng. A 644 (2015) 25-31.
DOI URL |
[32] |
J.F. Huang, H.Y. Yu, Y.B. Li, H. Cui, J.P. He, J.S. Zhang, Mater. Des. 30 (2009) 440-444.
DOI URL |
[33] |
L. Jiang, D. Zhang, X. Fan, F. Guo, G. Hu, H. Xue, F. Pan, . J. Alloys Compd. 620 (2015) 368-375.
DOI URL |
[34] |
S. Celotto, Acta Mater. 48 (2000) 1775-1787.
DOI URL |
[35] |
C.R. Hutchinson, J.F. Nie, S. Gorsse, Metall. Mater. Trans. A 36 (2005) 2093-2105.
DOI URL |
[36] |
L.Q. Tang, F.L. Jiang, J. Teng, D.F. Fu, H. Zhang, J. Alloys Compd. 806 (2019) 292-301.
DOI URL |
[37] |
E. Cerri, D. Knez, T. Rimoldi, M.T. Di Giovanni, J. Magnesium Alloys 5 (2017) 388-403.
DOI URL |
[38] |
F.L. Jiang, H.S. Zurob, G.R. Purdy, H. Zhang, Mater. Charact. 117 (2016) 47-56.
DOI URL |
[39] |
X.N. Wang, L.Z. Han, J.F. Gu, Trans. Nonferrous Met. Soc. China 24 (2014) 1690-1697.
DOI URL |
[40] |
I. Yakubtsov, J. Alloys Compd. 492 (2010) 153-159.
DOI URL |
[41] |
V. Neubert, I. Stulikova, B. Smola, B.L. Mordike, M. Vlach, A. Bakkar, J. Pelcova, Mater. Sci. Eng. A 462 (2007) 329-333.
DOI URL |
[42] |
F.L. Jiang, H. Zhang, J. Mater. Sci. 53 (2018) 2830-2843.
DOI URL |
[43] | P.L. Rossiter, The Electrical Resistivity of Metals and Alloys, Cambridge University Press 1991. |
[44] |
F.L. Jiang, H.S. Zurob, G.R. Purdy, X. Wang, H. Zhang, Metall. Mater. Trans. A 49 (2018) 5157-5168.
DOI URL |
[45] |
B.J. Zhou, L.Y. Wang, B. Chen, Y.W. Jia, W. Wen, D.J. Li, D. Shu, P.P. Jin, X.Q. Zeng, W.J. Ding, Mater. Sci. Eng. A 708 (2017) 319-328.
DOI URL |
[46] |
T. Ying, H. Chi, M. Zheng, Z. Li, C. Uher, Acta Mater. 80 (2014) 288-295.
DOI URL |
[47] |
O.R. Myhr, Ø. Grong, Acta Mater. 48 (2000) 1605-1615.
DOI URL |
[48] | X.L. Xiao, C.P. Luo, J.F. Nie, B.C. Muddle, Acta Metall. Sin. 37 (2001) 1-7. |
[49] |
S. Celotto, T.J. Bastow, Acta Mater. 49 (2001) 41-51.
DOI URL |
[50] |
R.A. Fournelle, J.B. Clark, Metall. Mater. Trans. B 3 (1972) 2757-2767.
DOI URL |
[51] |
D. Duly, Y. Brochet, B. Chenal, Acta Metall. 40 (1992) 2289-2294.
DOI URL |
[1] | Yuankui Cao, Weidong Zhang, Bin Liu, Yong Liu, Meng Du, Ao Fu. Phase decomposition behavior and its effects on mechanical properties of TiNbTa0.5ZrAl0.5 refractory high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 10-20. |
[2] | Sang Won Lee, Gukin Han, Tea-Sung Jun, Sung Hyuk Park. Effects of initial texture on deformation behavior during cold rolling and static recrystallization during subsequent annealing of AZ31 alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 139-149. |
[3] | Xiaofei Cui, Wei Fu, Daqing Fang, Guangli Bi, Zijun Ren, Shengwu Guo, Suzhi Li, Xiangdong Ding, Jun Sun. Mechanical properties and deformation mechanisms of a novel fine-grained Mg-Gd-Y-Ag-Zr-Ce alloy with high strength-ductility synergy [J]. J. Mater. Sci. Technol., 2021, 66(0): 64-73. |
[4] | Haoxue Yang, Jinshan Li, Xiangyu Pan, William Yi Wang, Hongchao Kou, Jun Wang. Nanophase precipitation and strengthening in a dual-phase Al0.5CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 1-7. |
[5] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[6] | Dongdong Dong, Cheng Chang, Hao Wang, Xingchen Yan, Wenyou Ma, Min Liu, Sihao Deng, Julien Gardan, Rodolphe Bolot, Hanlin Liao. Selective laser melting (SLM) of CX stainless steel: Theoretical calculation, process optimization and strengthening mechanism [J]. J. Mater. Sci. Technol., 2021, 73(0): 151-164. |
[7] | S.Z. Wu, T. Nakata, G.Z. Tang, C. Xu, X.J. Wang, X.W. Li, X.G. Qiao, M.Y. Zheng, L. Geng, S. Kamado, G.H. Fan. Effect of forced-air cooling on the microstructure and age-hardening response of extruded Mg-Gd-Y-Zn-Zr alloy full with LPSO lamella [J]. J. Mater. Sci. Technol., 2021, 73(0): 66-75. |
[8] | Di Wu, Libin Liu, Lijun Zeng, Wenguang Zhu, Wanlin Wang, Xiaoyong Zhang, Junfeng Hou, Baoliang Liu, Jiafeng Lei, Kechao Zhou. Designing high-strength titanium alloy using pseudo-spinodal mechanism through diffusion multiple experiment and CALPHAD calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 78-88. |
[9] | Wei Wu, Yongshan Wei, Hongjiang Chen, Keyan Wei, Zhitong Li, Jianhui He, Libo Deng, Lei Yao, Haitao Yang. In-situ encapsulation of α-Fe2O3 nanoparticles into ZnFe2O4 micro-sized capsules as high-performance lithium-ion battery anodes [J]. J. Mater. Sci. Technol., 2021, 75(0): 110-117. |
[10] | L. Zhou, C.L. Wu, P. Xie, F.J. Niu, W.Q. Ming, K. Du, J.H. Chen. A hidden precipitation scenario of the θ′-phase in Al-Cu alloys [J]. J. Mater. Sci. Technol., 2021, 75(0): 126-138. |
[11] | Yongliang Qi, Tinghui Cao, Hongxiang Zong, Yake Wu, Lin He, Xiangdong Ding, Feng Jiang, Shenbao Jin, Gang Sha, Jun Sun. Enhancement of strength-ductility balance of heavy Ti and Al alloyed FeCoNiCr high-entropy alloys via boron doping [J]. J. Mater. Sci. Technol., 2021, 75(0): 154-163. |
[12] | Yang Wang, Shun Zhang, Ruizhi Wu, Nodir Turakhodjaev, Legan Hou, Jinghuai Zhang, Sergey Betsofen. Coarsening kinetics and strengthening mechanisms of core-shell nanoscale precipitates in Al-Li-Yb-Er-Sc-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 197-203. |
[13] | Yanan Zhao, Zongqing Ma, Liming Yu, Ji Dong, Yongchang Liu. The simultaneous improvements of strength and ductility in additive manufactured Ni-based superalloy via controlling cellular subgrain microstructure [J]. J. Mater. Sci. Technol., 2021, 68(0): 184-190. |
[14] | Shenbao Jin, Zhenjiao Luo, Xianghai An, Xiaozhou Liao, Jiehua Li, Gang Sha. Composition-dependent dynamic precipitation and grain refinement in Al-Si system under high-pressure torsion [J]. J. Mater. Sci. Technol., 2021, 68(0): 199-208. |
[15] | Hao Ding, Xiping Cui, Naonao Gao, Yuan Sun, Yuanyuan Zhang, Lujun Huang, Lin Geng. Fabrication of (TiB/Ti)-TiAl composites with a controlled laminated architecture and enhanced mechanical properties [J]. J. Mater. Sci. Technol., 2021, 62(0): 221-23. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||