J. Mater. Sci. Technol. ›› 2021, Vol. 65: 54-60.DOI: 10.1016/j.jmst.2020.04.081
• Research Article • Previous Articles Next Articles
Jing Zhoua, Siyi Dia, Baoan Sunb, Qiaoshi Zenga, Baolong Shena,c,*()
Received:
2020-02-27
Revised:
2020-04-09
Accepted:
2020-04-10
Published:
2021-02-28
Online:
2021-03-15
Contact:
Baolong Shen
About author:
* School of Materials Science and Engineering, JiangsuKey Laboratory for Advanced Metallic Materials, Southeast University, Nanjing211189, China.E-mail address: blshen@seu.edu.cn (B. Shen).Jing Zhou, Siyi Di, Baoan Sun, Qiaoshi Zeng, Baolong Shen. Correlation between deformation behavior and atomic-scale heterogeneity in Fe-based bulk metallic glasses[J]. J. Mater. Sci. Technol., 2021, 65: 54-60.
Fig. 2. The compressive stress-strain curves of [(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4, Fe39Ni39B14.2Si2.75P2.75Nb2.3, and Fe50Ni30P13C7 BMGs at room temperature.
Fig. 3. Plastic deformation region on stress-strain curve for (a) [(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4 BMG, (b) Fe39Ni39B14.2Si2.75P2.75Nb2.3 BMG, and (c) Fe50Ni30P13C7 BMG. (d), (e) and (f) is the enlarged stress-strain curve of steady-state deformation region in (a), (b) and (c), respectively.
Fig. 4. The enlarged transition region from stage Ⅰ to stage Ⅱ for (a) [(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4 BMG, (b) Fe39Ni39B14.2Si2.75P2.75Nb2.3 BMG, and (c) Fe50Ni30P13C7 BMG.
Fig. 5. A statistic results of stress drop for (a) [(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4 BMG, (b) Fe39Ni39B14.2Si2.75P2.75Nb2.3 BMG, and (c) Fe50Ni30P13C7 BMG, the increasing rate of serration size (△σmax/△ε) is the slop of the red line. The statistical distribution of the overall serration number at different serration sizes in (d) [(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4 BMG, (e) Fe39Ni39B14.2Si2.75P2.75Nb2.3 BMG, and (f) Fe50Ni30P13C7 BMG, the inset in (f) represent the corresponding power spectrum S(ω) ~ ω for Fe50Ni30P13C7 BMG.
Fig. 7. Synchrotron XRD results of Fe39Ni39B14.2Si2.75P2.75Nb2.3 and Fe50Ni30P13C7 BMGs. (a) Total structure factor S(Q), inset is the enlarge region on the first peak of S(Q) shown in (a) with dashed lines denoting the peak positions. (b) Reduced pair distribution function G(r), inset is the enlarged region on the G(r) function shown in (b) at r ≤ 2.0 ? with dashed lines denoting the slope of the curve in this low-r region.
Fig. 8. SEM images showing the shear band morphology of (a) [(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4 BMG, (b) Fe39Ni39B14.2Si2.75P2.75Nb2.3 BMG, and (c) Fe50Ni30P13C7 BMG.
Fig. 9. The relationships of serrated flow dynamics (average serration size), structural heterogeneity (increasing rate of serration size) and plasticity in Fe-based BMGs. Inset is the fracture morphology of [(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4, Fe39Ni39B14.2Si2.75P2.75Nb2.3 and Fe50Ni30P13C7 BMGs shown in order from brittle to ductile, and the dominant fracture mechanism from brittle to ductile is also shown.
[1] |
A.L. Greer, E. Ma, MRS Bull. 32 (2007) 611-619.
DOI URL |
[2] |
C. Suryanarayana, A. Inoue, Int. Mater. Rev. 58 (2013) 131-166.
DOI URL |
[3] |
A. Inoue, B.L. Shen, C.T. Chang, Acta Mater. 52 (2004) 4093-4099.
DOI URL |
[4] |
A. Inoue, B.L. Shen, Adv. Mater. 16 (2004) 2189-2192.
DOI URL |
[5] |
X.D. Qin, Z.K. Li, Z.W. Zhu, H.M. F, H. Li, A.M. Wang, H.W. Zhang, H.F. Zhang, J. Mater. Sci. Technol. 34 (2018) 2290-2296.
DOI URL |
[6] |
B.L. Shen, C.T. Chang, A. Inoue, Intermetallics 1 (2007) 9-16.
DOI URL |
[7] |
K.F. Yao, C.Q. Zhang, Appl. Phys. Lett. 90 (2007), 061901.
DOI URL |
[8] |
J.M. Park, G. Wang, R. Li, N. Mattern, J. Eckert, D.H. Kim, Appl. Phys. Lett. 96 (2010), 031905.
DOI URL |
[9] |
W.M. Yang, H.S. Liu, Y.C. Zhao, A. Inoue, K.M. Jiang, J.T. Huo, H.B. Ling, Q. Li, B.L. Shen, Sci. Rep. 4 (2014) 6233.
DOI URL PMID |
[10] |
S.F. Guo, J.L. Qiu, P. Yu, S.H. Xie, W. Chen, Appl. Phys. Lett. 105 (2014), 161901.
DOI URL |
[11] |
J.F. Wang, W.B. Cao, L.G. Wang, S.J. Zhu, S.K. Guan, L. Huang, R. Li, T. Zhang, J. Alloys. Compd. 637 (2015) 5-9.
DOI URL |
[12] |
J. Zhou, W.M. Yang, C.C. Yuan, B.A. Sun, B.L. Shen, J. Alloys. Compd. 742 (2018) 318-324.
DOI URL |
[13] |
J. Zhou, B.A. Sun, Q.Q. Wang, Q.M. Yang, W.M. Yang, B.L. Shen, J. Alloys. Compd. 783 (2019) 555-564.
DOI URL |
[14] |
H.C. Sun, Z.L. Ning, J.L. Ren, W.Z. Liang, Y.J. Huang, J.F. Sun, X. Xue, G. Wang, J. Mater. Sci. Technol. 35 (2019) 2079-2085.
DOI URL |
[15] |
J.J. Li, J.W. Qiao, Y.C. Wu, J. Alloys. Compd. 819 (2020), 152941.
DOI URL |
[16] |
G.N. Yang, S.Q. Chen, J.L. Gu, S.F. Zhao, J.F. Li, Y. Shao, H. Wang, K.F. Yao, Philos. Mag. 96 (2016) 2243-2255.
DOI URL |
[17] |
Z. Wang, J.W. Qiao, H. Tian, B.A. Sun, B.C. Wang, B.S. Xu, M.W. Chen, Appl. Phys. Lett. 107 (2015), 201902.
DOI URL |
[18] |
J.J. Li, J.W. Qiao, K.A. Dahmen, W.M. Yang, B.L. Shen, M.W. Chen, J. Iron Steel Res. Int. 24 (2017) 366-371.
DOI URL |
[19] |
H.B. Ke, B.A. Sun, C.T. Liu, Y. Yang, Acta Mater. 63 (2014) 180-190.
DOI URL |
[20] | Z. Wang, J.W. Qiao, H.J. Yang, P.K. Liaw, C.J. Huang, L.F. Li, Metall. Mater. Trans. A 46A (2015) 2404-2414. |
[21] |
J. Hu, B.A. Sun, Y. Yang, C.T. Liu, S. Pauly, Y.X. Weng, J. Eckert, Intermetallics 66 (2015) 31-39.
DOI URL |
[22] |
J.C. Qiao, Q. Wang, J.M. Pelletier, H. Kato, R. Casalini, D. Crespo, E. Pineda, Y. Yao, Y. Yang, Prog. Mater. Sci. 104 (2019) 250-329.
DOI URL |
[23] |
L.H. Liu, Z.Y. Liu, Y. Huan, X.Y. Wu, Y. Lou, X.S. Huang, L.J. He, P.J. Li, L.C. Zhang, J. Alloys. Compd. 766 (2018) 908-917.
DOI URL |
[24] |
M. Kumar, E. Nicholson, D.W. Kirk, S.J. Thorpe, C.V. Singh, J. Alloys. Compd. 787 (2019) 840-850.
DOI URL |
[25] |
B. Sarac, Y.P. Ivanov, A. Chuvilin, T. Schöberl, M. Stoica, Z. Zhang, J. Eckert, Nat. Commun. 9 (2018) 1333.
DOI URL PMID |
[26] |
A.P. Hammersley, S.O. Svensson, M. Hanfland, A.N. Fitch, D. Hausermann, High Pressure Res. 14 (1996) 235-248.
DOI URL |
[27] |
I.K. Jeong, J. Thompson, Th. Proffen, A. Perez, S.J.L. Billinge, J. Appl. Cryst. 34 (2001) 536.
DOI URL |
[28] |
A. Inoue, Y. Shinohara, J.S. Gook, Mater. Trans. JIM 36 (1995) 1427-1433.
DOI URL |
[29] |
A. Inoue, T. Zhang, A. Takeuchi, Appl. Phys. Lett. 71 (1997) 464-466.
DOI URL |
[30] |
A. Inoue, B.L. Shen, A.R. Yavari, A.L. Greer, J. Mater. Res. 18 (2003) 1487-1492.
DOI URL |
[31] |
Z.P. Lu, C.T. Liu, J.R. Thompson, W.D. Porter, Phys. Rev. Lett. 92 (2004), 245503.
DOI URL PMID |
[32] |
K. Amiya, A. Urata, N. Nishiyama, A. Inoue, Mater. Trans. 45 (2004) 1214-1218.
DOI URL |
[33] |
J. Shen, Q.J. Chen, J.F. Sun, H.B. Fan, G. Wang, Appl. Phys. Lett. 86 (2005), 151907.
DOI URL |
[34] |
X.J. Gu, A.G. McDermott, S.J. Poon, G.J. Shiflet, Appl. Phys. Lett. 88 (2006), 211905.
DOI URL |
[35] |
T. Zhang, F.J. Liu, S.J. Pang, R. Li, Mater. Trans. 48 (2007) 1157-1160.
DOI URL |
[36] |
D.H. Kim, J.M. Park, D.H. Kim, W.T. Kim, J. Mater. Res. 22 (2007) 471-477.
DOI URL |
[37] | F.J. Liu, Q.W. Yang, S.J. Pang, C.L. Ma, T. Zhang, Mater. Trans. 45 (2008) 231-234. |
[38] |
X.J. Gu, S.J. Poon, G.J. Shiflet, M. Widom, Acta Mater. 56 (2008) 88-94.
DOI URL |
[39] |
J.H. Yao, J.Q. Wang, Y. Li, Appl. Phys. Lett. 92 (2008), 251906.
DOI URL |
[40] |
Z.Y. Chang, X.M. Huang, L.Y. Chen, M.Y. Ge, Q.K. Jiang, X.P. Nie, J.Z. Jiang, Mater. Sci. Eng. A 517 (2009) 246-248.
DOI URL |
[41] |
S.F. Guo, L. Liu, N. Li, Y. Li, Scripta Mater. 62 (2010) 329-332.
DOI URL |
[42] |
S.F. Guo, N. Li, C. Zhang, L. Liu, J. Alloys. Compd. 504 (2010) S78-S81.
DOI URL |
[43] |
X.H. Ma, X.H. Yang, Q. Li, S.F. Guo, J. Alloys. Compd. 577 (2013) 345-350.
DOI URL |
[44] |
X.H. Yang, X.H. Ma, Q. Li, S.F. Guo, J. Alloys. Compd. 554 (2013) 446-449.
DOI URL |
[45] |
P. Ramasamy, M. Stoica, S. Bera, M. Calin, J. Eckert, J. Alloys. Compd. 707 (2017) 78-81.
DOI URL |
[46] |
B.A. Sun, H.B. Yu, W. Jiao, H.Y. Bai, D.Q. Zhao, W.H. Wang, Phys. Rev. Lett. 105 (2010), 035501.
DOI URL PMID |
[47] |
P. Sammonds, Nat. Mater. 4 (2005) 425-426.
DOI URL PMID |
[48] |
G. Wang, K.C. Chan, L. Xia, P. Yu, J. Shen, W.H. Wang, Acta Mater. 57 (2009) 6146-6155.
DOI URL |
[49] |
G. Ananthakrishna, S.J. Noronha, C. Fressengeas, L.P. Kubin, Phys. Rev. E 60 (1999) 5455-5462.
DOI URL |
[50] |
D. Ma, A.D. Stoica, X.L. Wang, Nat. Mater. 8 (2009) 30-34.
DOI URL PMID |
[51] |
R. Liontas, M.J. Zadeh, Q.S. Zeng, Y.W. Zhang, W.L. Mao, J.R. Greer, Acta Mater. 118 (2016) 270-285.
DOI URL |
[52] |
F. Spaepen, Acta Metall. 25 (1977) 407-415.
DOI URL |
[53] |
A.L. Greer, Y.Q. Cheng, E. Ma, Mater. Sci. Eng. R 74 (2013) 71-132.
DOI URL |
[54] |
H. Guo, C.B. Jiang, B.J. Yang, J.Q. Wang, J. Mater. Sci. Technol. 33 (2017) 1272-1277.
DOI URL |
[55] |
W. Jiao, P. Wen, H.L. Peng, H.Y. Bai, B.A. Sun, W.H. Wang, Appl. Phys. Lett. 102 (2013), 101903.
DOI URL |
[56] |
B.A. Sun, W.H. Wang, Prog. Mater. Sci. 74 (2015) 211-307.
DOI URL |
[57] |
Y.C. Wang, X.M. Luo, L.J. Chen, H.W. Yang, B. Zhang, G.P. Zhang, J. Mater. Sci. Technol. 34 (2018) 2283- 2289. 60
DOI URL |
[1] | L. Deng, K. Kosiba, R. Limbach, L. Wondraczek, U. Kühn, S. Pauly. Plastic deformation of a Zr-based bulk metallic glass fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 60(0): 139-146. |
[2] | Yu Han, Huabing Li, Hao Feng, Kemei Li, Yanzhong Tian, Zhouhua Jiang. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying [J]. J. Mater. Sci. Technol., 2021, 65(0): 210-215. |
[3] | Jing Zhou, Qianqian Wang, Qiaoshim Zeng, Kuibo Yin, Anding Wang, Junhua Luan, Litao Sun, Baolong Shen. A plastic FeNi-based bulk metallic glass and its deformation behavior [J]. J. Mater. Sci. Technol., 2021, 76(0): 20-32. |
[4] | Hui Wang, Cheng Lu, Kiet Tieu, Yu Liu. A crystal plasticity FE study of macro- and micro-subdivision in aluminium single crystals {001}<110> multi-pass rolled to a high reduction [J]. J. Mater. Sci. Technol., 2021, 76(0): 231-246. |
[5] | Lin Gao, Kai Li, Song Ni, Yong Du, Min Song. The growth mechanisms of θ′ precipitate phase in an Al-Cu alloy during aging treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 25-32. |
[6] | Zhuwei Lv, Chenchen Yuan, Haibo Ke, Baolong Shen. Defects activation in CoFe-based metallic glasses during creep deformation [J]. J. Mater. Sci. Technol., 2021, 69(0): 42-47. |
[7] | Mattia Biesuz, Theo Saunders, Daoyao Ke, Michael J. Reece, Chungfeng Hu, Salvatore Grasso. A review of electromagnetic processing of materials (EPM): Heating, sintering, joining and forming [J]. J. Mater. Sci. Technol., 2021, 69(0): 239-272. |
[8] | Baoguo Yuan, Xing Liu, Jiangfei Du, Qiang Chen, Yuanyuan Wan, Yunliang Xiang, Yan Tang, Xiaoxue Zhang, Zhongyue Huang. Effects of hydrogenation temperature on room-temperature compressive properties of CMHT-treated Ti6Al4V alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 132-143. |
[9] | R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: I. Model building and fatigue strength prediction [J]. J. Mater. Sci. Technol., 2021, 70(0): 233-249. |
[10] | Yujie Chen, Yan Fang, Xiaoqian Fu, Yiping Lu, Sijing Chen, Hongbin Bei, Qian Yu. Origin of strong solid solution strengthening in the CrCoNi-W medium entropy alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 101-107. |
[11] | Qiang Zhu, Chuanjie Wang, Kai Yang, Gang Chen, Heyong Qin, Peng Zhang. Plastic deformation behavior of a nickel-based superalloy on the mesoscopic scale [J]. J. Mater. Sci. Technol., 2020, 40(0): 146-157. |
[12] | Seok Gyu Lee, Bohee Kim, Min Cheol Jo, Kyeong-Min Kim, Junghoon Lee, Jinho Bae, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Effects of Cr addition on Charpy impact energy in austenitic 0.45C-24Mn-(0,3,6)Cr steels [J]. J. Mater. Sci. Technol., 2020, 50(0): 21-30. |
[13] | Xuchen Yin, Jianrong Liu, Qingjiang Wang, Lei Wang. Investigation of beta fleck formation in Ti-17 alloy by directional solidification method [J]. J. Mater. Sci. Technol., 2020, 48(0): 36-43. |
[14] | Longjun Wu, Zhengwang Zhu, Dingming Liu, Huameng Fu, Hong Li, Aimin Wang, Hongwei Zhang, Zhengkun Li, Long Zhang, Haifeng Zhang. Deformation behavior of a TiZr-based metallic glass composite containing dendrites in the supercooled liquid region [J]. J. Mater. Sci. Technol., 2020, 37(0): 64-70. |
[15] | Guang-Jian Yuan, Xian-Cheng Zhang, Bo Chen, Shan-Tung Tu, Cheng-Cheng Zhang. Low-cycle fatigue life prediction of a polycrystalline nickel-base superalloy using crystal plasticity modelling approach [J]. J. Mater. Sci. Technol., 2020, 38(0): 28-38. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||