J. Mater. Sci. Technol. ›› 2021, Vol. 63: 106-114.DOI: 10.1016/j.jmst.2019.12.029
• Research Article • Previous Articles Next Articles
Wenhuan Wanga, Lin Sangb,*(
), Yiping Zhaoc,*(
), Zhiyong Weia,*(
), Min Qid, Yang Lia
Received:2019-10-17
Revised:2019-12-26
Accepted:2019-12-31
Published:2021-02-10
Online:2021-02-15
Contact:
Lin Sang,Yiping Zhao,Zhiyong Wei
About author:zywei@dlut.edu.cn (Z. Wei).Wenhuan Wang, Lin Sang, Yiping Zhao, Zhiyong Wei, Min Qi, Yang Li. Inherently radiopaque polyurethane beads as potential multifunctional embolic agent in hepatocellular carcinoma therapy[J]. J. Mater. Sci. Technol., 2021, 63: 106-114.
Fig. 4. Fluorescent microscopy image and the corresponding fluorescent intensity of doxorubicin-loaded beads, (a) I-PCLU-121/DOX and (b) I-PCLU-132/DOX beads.
Fig. 5. Accumulated release curves of I-PCLU-121/Dox and I-PCLU-132/Dox beads, and the X-ray images of Dox-loaded beads before and after releasing was inset in the release curves.
Fig. 7. The cell viability of drug-loaded I-PCLU-121 and I-PCLU-132 beads after 24 h (a-d) and 72 h (e-h) Hela culture (TCPS and Dox were set as negative and positive group).
Fig. 9. Toxicity evaluation of the as-prepared blank beads via in vivo toxicity test. Histological section of tissues contained beads (a, c) I-PCLU-121 and (b, d) I-PCLU-132 beads after one and four weeks’ implantation (the arrows pointing the implanted microspheres, the magnification was ×100).
Fig. 10. (a), (b) Radiopaque signal and (c) CT scan images recorded of I-PCLU-132/Dox beads at the delay period (1 h later); (d)-(j) Radiopaque signal of contrast agent at gastric area; (k), (l) Radiopaque signal of contrast agent at kidney area.
Fig. 11. CT scan images presented the tumors volume changes: (a), (b) The control group rabbit with normal breeding; (c), (d) The experimental group rabbit with interventional therapy. The numbers in each image show tumor volume and the relative changes compared to their original volume.
| [1] |
Q.V. Nguyen, M.S. Lee, J.S. Lym, Y.I. Kim, H.J. Jae, D.S. Lee, J. Mater. Chem. B 4 (2016) 6524-6533.
DOI URL PMID |
| [2] |
C. Oerlemans, P.R. Seevinck, G.H. van de Maat, H. Boulkhrif, C.J. G. Bakker, W.E. Hennink, J.F. W. Nijsen, Acta Biomater. 9 (2013) 4681-4687.
DOI URL PMID |
| [3] |
A.L. Lewis, M.R. Dreher, J. Control. Release 161 (2012) 338-350.
DOI URL PMID |
| [4] |
H. Shi, T. Liu, C.H. Fu, L.L. Li, L.F. Tan, J.Z. Wang, X.L. Ren, J. Ren, J.X. Wang, X.W. Meng, Biomaterials 44 (2014) 91-102.
DOI URL PMID |
| [5] |
S. Ishimori, M. Hattori, Y. Shibata, H. Shizawa, R. Fujinaga, J. Neurosurg. 27 (1967) 315-319.
DOI URL PMID |
| [6] |
C. Niessen, E. Unterpaintner, H. Goessmann, H.J. Schlitt, M. Mueller-Schilling, W.A. Wohlgemuth, C. Stroszczynski, P. Wiggermann, J. Vasc. Interv. Radiol. 25 (2014) 240-247.
DOI URL |
| [7] |
S. Louguet, V. Verret, L. Bédouet, E. Servais, F. Pascale, M. Wassef, D. Labarre, A. Laurent, L. Moine, Acta Biomater. 10 (2014) 1194-1205.
DOI URL PMID |
| [8] |
R. Loffroy, M.D. Lin, G. Yenokyan, P.P. Rao, N. Bhagat, N. Noordhoek, A. Radaelli, J. Blijd, E. Liapi, J.F. Geschwind, Radiology 266 (2013) 636-648.
DOI URL PMID |
| [9] |
D. Bannerman, W.K. Wan, Expert. Opin. Drug. Del. 13 (2016) 1289-1300.
DOI URL |
| [10] |
Q.S. Liu, Q.L. Mei, Y.H. Li, Eur. J. Radiol. 89 (2017) 277-283.
DOI URL PMID |
| [11] |
L.D. Nash, M.B.B. Monroe, Y.H. Ding, K.P. Ezell, A.J. Boyle, R. Kadirvel, D.F. Kallmes, D.J. Maitland, Polymers 9 (2017) 381.
DOI URL PMID |
| [12] |
Y.Y. Ma, J.S. Wan, K. Qian, S.N. Geng, N.J. He, G.F. Zhou, Y.B. Zhao, X.L. Yang, J. Mater. Chem. B 2 (2014) 6044-6453.
DOI URL PMID |
| [13] |
H. Aviv, S. Bartling, F. Kieslling, S. Margel, Biomaterials 30 (2009) 5610-5616.
DOI URL PMID |
| [14] |
T.R. Olsen, L.L. Davis, S.E. Nicolau, C.C. Duncan, D.C. Whitehead, B.A. Horn, F. Alexis, Acta Biomater. 20 (2015) 94-103.
DOI URL PMID |
| [15] | C. S. J. van Hooy-Corstjens, S.K. Bulstra, M.L. W. Knetsch, P. Geusens, R. Kuijer, L.H. Koole, J. Biomed, Mater. Res. B-Appl. Biomater. 80B (2007) 339-344. |
| [16] |
K. Saralidze, M.L.W. Knetsch, C.S.J. van Hooy-Corstjens, L.H. Koole, Biomacromolecules 7 (2006) 2991-2996.
DOI URL PMID |
| [17] |
A.H. Negussie, M.R. Dreher, C.G. Johnson, Y.Q. Tang, A.L. Lewis, G. Storm, K.V. Sharma, B.J. Wood, J. Mater, Sci. Mater. Med. 26 (2015) 198.
DOI URL |
| [18] |
K.A. Aamer, K.L. Genson, J. Kohn, M.L. Becker, Biomacromolecules 10 (2009) 2418-2426.
DOI URL PMID |
| [19] |
B.A. Van Horn, L.L. Davis, S.E. Nicolau, E.E. Burry, V.O. Bailey, F.D. Guerra, F. Alexis, D.C. Whitehead, J. Polym. Sci. Part A- Polym. Chem. 55 (2017) 787-793.
DOI URL |
| [20] |
K.V. Sharma, Z. Bascal, H. Kilpatrick, K. Ashrafi, S.L. Willis, M.R. Dreher, A.L. Lewis, Biomaterials 103 (2016) 293-304.
DOI URL PMID |
| [21] |
Z. Wei, P. Song, L. Sang, K. Liu, C. Zhou, Y. Wang, Y. Li, Polymer 55 (2014) 2751-2760.
DOI URL |
| [22] |
Y. Hong, S.H. Ye, A. Nieponice, L. Soletti, D.A. Vorp, W.R. Wagner, Biomaterials 30 (2009) 2457-2467.
DOI URL |
| [23] |
K. Saralidze, C.S. van Hooy-Corstjens, L.H. Koole, M.L. Knetsch, Biomaterials 28 (2007) 2457-2464.
DOI URL |
| [24] |
W.Q. Qu, W.J. Xia, C. Feng, X.L. Tuo, T. Qiu, J. Polym. Sci. A-Polym. Chem. 49 (2011) 2191-2198.
DOI URL |
| [25] |
S. Kiran, N.R. James, A. Jayakrishnan, R. Joseph, J. Biomed. Mater. Res. A. 100 (2012) 3472-3479.
DOI URL PMID |
| [26] |
L. Sang, Z. Wei, K. Liu, X. Wang, K. Song, H. Wang, M. Qi, J. Biomed. Mater. Res. A. 102 (2014) 1121-1130.
URL PMID |
| [27] |
L. Sang, Z. Wei, L. Zhai, H. Wang, M. Qi, J. Mater. Sci. 49 (2014) 7834-7843.
DOI URL |
| [28] |
L.R. Du, Y.G. Huang, Q. Zhang, Y. Zhou, J.W. Huang, L.B. Yan, Z.J. Yu, A.P. Qin, H.N. Yang, M.R. Chen, L. Liang, B.Y. Bian, X.F. Li, J.J. Fu, Acta Biomater. 88 (2019) 370-382.
DOI URL PMID |
| [29] |
E.P. Porcu, A. Salis, G. Rassu, M. Maestri, J. Galafassi, G. Bruni, P. Giunchedi, E. Gavini, Eur. J. Pharm. Biopharm. 117 (2017) 160-167.
DOI URL PMID |
| [30] | L. Sang, D. Luo, Z. Wei, M. Qi, Mater. Sci. Eng. C Mater.Biol. Appl. 75 (2017) 1389-1398. |
| [31] |
M.F. Hsu, Y.S. Tyan, Y.C. Chien, M.W. Lee, Sci. Rep. 8 (2018) 731.
DOI URL PMID |
| [32] |
F. Zhou, L.M. Chen, Q.Z. An, L. Chen, Y. Wen, F. Fang, W. Zhu, T. Yi, Sci. Rep. 6 (2016) 32145.
DOI URL PMID |
| [1] | Dayi Pan, Xiuli Zheng, Miao Chen, Qianfeng Zhang, Zhiqian Li, Zhenyu Duan, Qiyong Gong, Zhongwei Gu, Hu Zhang, Kui Luo. Dendron-polymer hybrid mediated anticancer drug delivery for suppression of mammary cancer [J]. J. Mater. Sci. Technol., 2021, 63(0): 115-123. |
| [2] | Leilei Chen, Jun Xu, Yi Wang, Rongqin Huang. Ultra-small MoS2 nanodots-incorporated mesoporous silica nanospheres for pH-sensitive drug delivery and CT imaging [J]. J. Mater. Sci. Technol., 2021, 63(0): 91-96. |
| [3] | Yongren Wu, Shun Chen, Yang Liu, Zhiwei Lu, Shaokun Song, Yang Zhang, Chuanxi Xiong, Lijie Dong. One-step preparation of porous aminated-silica nanoparticles and their antibacterial drug delivery applications [J]. J. Mater. Sci. Technol., 2020, 50(0): 139-146. |
| [4] | Jian Xiao, Yizao Wan, Zhiwei Yang, Yuan Huang, Fanglian Yao, Honglin Luo. Bioactive glass nanotube scaffold with well-ordered mesoporous structure for improved bioactivity and controlled drug delivery [J]. J. Mater. Sci. Technol., 2019, 35(9): 1959-1965. |
| [5] | Ma Xing, Feng Huanhuan, Liang Chunyan, Liu Xiaojia, Zeng Fanyu, Wang Yong. Mesoporous silica as micro/nano-carrier: From passive to active cargo delivery, a mini review [J]. J. Mater. Sci. Technol., 2017, 33(10): 1067-1074. |
| [6] | Fan Changjiang,Wang Dong-An. Novel Gelatin-based Nano-gels with Coordination-induced Drug Loading for Intracellular Delivery [J]. J. Mater. Sci. Technol., 2016, 32(9): 840-844. |
| [7] | Li Yang,Liu Xuqiang,Tan Lili,Ren Ling,Wan Peng,Hao Yongqiang,Qu Xinhua,Yang Ke,Dai Kerong. Enoxacin-loaded Poly (lactic-co-glycolic acid) Coating on Porous Magnesium Scaffold as a Drug Delivery System: Antibacterial Properties and Inhibition of Osteoclastic Bone Resorption [J]. J. Mater. Sci. Technol., 2016, 32(9): 865-873. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
