J. Mater. Sci. Technol. ›› 2021, Vol. 60: 156-161.DOI: 10.1016/j.jmst.2020.07.003
• Research Article • Previous Articles Next Articles
Pan Xie, Shucheng Shen, Cuilan Wu*(), Jianghua Chen*(
)
Received:
2020-03-03
Accepted:
2020-05-01
Published:
2021-01-10
Online:
2021-01-22
Contact:
Cuilan Wu,Jianghua Chen
Pan Xie, Shucheng Shen, Cuilan Wu, Jianghua Chen. Abnormal orientation relation between fcc and hcp structures revealed in a deformed high manganese steel[J]. J. Mater. Sci. Technol., 2021, 60: 156-161.
Fig. 1. (a) TEM images showing the intersection of two εhcp variants viewed from the zone axis [-110]γ // [2-1-10]ε; (b-d) are corresponding diffraction patterns of the areas marked by the circles “b”, “c” and “d” in (a), respectively; (e) stereographic projection of crystal indices showing orientation relationships of multi-phases.
Basis | γ | ε |
---|---|---|
Invariant line | $\left[ {\overline {3.2} 1\bar 1} \right]$ | [12$\overline {4.96}$] |
Calculated habit plane | $(\bar 1\overline {1.58} 1.58)$ | (02.491) |
∠11.3°∧$(\bar 1\bar 11){\text{\gamma }}$ | ∠77.9°∧(002)ε | |
Experimental habit plane | ∠10.7°∧$(\bar 1\bar 11){\text{\gamma }}$ | ∠80°∧(002)ε |
Difference | ~0.6° | ~2.1° |
Table 1 Results of the calculated invariant lines and habit planes in comparison with the experimental results corresponding to the special OR in Fig. 1.
Basis | γ | ε |
---|---|---|
Invariant line | $\left[ {\overline {3.2} 1\bar 1} \right]$ | [12$\overline {4.96}$] |
Calculated habit plane | $(\bar 1\overline {1.58} 1.58)$ | (02.491) |
∠11.3°∧$(\bar 1\bar 11){\text{\gamma }}$ | ∠77.9°∧(002)ε | |
Experimental habit plane | ∠10.7°∧$(\bar 1\bar 11){\text{\gamma }}$ | ∠80°∧(002)ε |
Difference | ~0.6° | ~2.1° |
Fig. 3. An extended superimposed pattern of reciprocal points in the zone axes of [0 1 1]γ and [2-1-10]ε according to the quasi-O-line OR similar to the special OR in our experiment.
Fig. 4. HRTEM image showing steps formed between εhcp-martensite and γR-austenite on atomic scale. Note that the habit plane trace is indicated by green dot-dashed line.
Fig. 5. Schematic representation of phase transformation models in the austenitic matrix based on transmission mechanisms of dislocations. Green arrows indicate the directions of dislocation glide.
[1] |
Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227-231.
DOI URL PMID |
[2] | C. Li, L. Qin, M. Li, H. Xiao, Q. Wang, J. Chen, J. Alloys Compd. 815(2020), 152426. |
[3] | C. Li, H. Li, S. van der Zwaag, Wear 400-441(2019) 203094. |
[4] | A.J. Bogers, W.G. Burgers, Acta Metall. 12(1964) 255-261. |
[5] | G.B. Olson, M. Cohen, Metall. Trans. A 7 (1976) 1905-1914. |
[6] | K. Verbeken, L. Barbé, D. Raabe, ISIJ Int. 49(2009) 1601-1609. |
[7] |
G.V. Kurdjumov, G. Sachs, Z. Phys. 64(1930) 325-343.
DOI URL |
[8] | Z. Nishiyama, Sci. Rep. Inst. 23(1934/1935) 638-651. |
[9] | G. Wassermann, Arch. Eisenhüttenwes 16 (1933) 647-654. |
[10] | W. Pitsch, Acta Metall. 10(1962) 897-900. |
[11] | Z. Nishiyama, Martensitic Transformations, Academic Press, New York, 1978, pp. 49. |
[12] | S. Kajiwara, Mater. Sci. Eng. A 273 (1999) 67-88. |
[13] | L. Bracke, L. Kestens, J. Penning, Scr. Mater. 57(2007) 385-388. |
[14] |
X.S. Yang, S. Sun, T.Y. Zhang, Acta Mater. 95(2015) 264-273.
DOI URL |
[15] | X. Zhang, T. Sawaguchi, K. Ogawa, F. Yin, X. Zhao, Philos. Mag. 91(2001) 4410-4426. |
[16] | U. Dahmen, P. Ferguson, K.H. Westmacott, Acta Metall. 32(1984) 803-810. |
[17] | W.Z. Zhang, G.C. Weatherly, Prog. Mater. Sci. 50(2005) 181-292. |
[18] | W.Z. Zhang, F. Ye, C. Zhang, Y. Qi, H.S. Fang, Acta Mater. 48(2000) 2209-2219. |
[19] | T. Furuhara, J.M. Howe, H.I. Aaronson, Acta Metall. Mater. 39(1991) 2873-2886. |
[20] |
Y. Liu, H. Yang, G. Tan, S. Miyazaki, B.H. Jiang, Y. Liu, J. Alloys Compd. 368(2004) 157-163.
DOI URL |
[21] | H.L. Zhao, M. Song, S. Ni, S. Shao, J. Wang, X.Z. Liao, Acta Mater. 131(2017) 271-279. |
[22] | Y.T. Zhu, X.L. Wu, X.Z. Liao, J. Narayan, L.J. Kecskés, S.N. Mathaudhu, Acta Mater. 59(2011) 812-821. |
[23] | S. Ni, Y.B. Wang, X.Z. Liao, R.B. Figueiredo, H.Q. Li, S.P. Ringer, T.G. Langdon, Y.T. Zhu, Acta Mater. 60(2012) 3181-3189. |
[24] | J. Luster, M.A. Morris, Metall. Mater. Trans. A 26 (1995) 1745-1756. |
[25] | T.R. Bieler, P. Eisenlohr, C. Zhang, H.J. Phukan, M.A. Crimp, Curr. Opin. Solid State Mater.Sci. 18(2014) 212-226. |
[1] | Tianqi Hou, Zirui Jia, Ailing Feng, Zehua Zhou, Xuehua Liu, Hualiang Lv, Guanglei Wu. Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity [J]. J. Mater. Sci. Technol., 2021, 68(0): 61-69. |
[2] | Ying Lin, Jin Chen, Shian Dong, Guangning Wu, Pingkai Jiang, Xingyi Huang. Wet-resilient graphene aerogel for thermal conductivity enhancement in polymer nanocomposites [J]. J. Mater. Sci. Technol., 2021, 83(0): 219-227. |
[3] | Lili Cao, Bingwei Luo, Hongli Gao, Min Miao, Tao Wang, Yuan Deng. Structure induced wide range wettability: Controlled surface of micro-nano/nano structured copper films for enhanced interface [J]. J. Mater. Sci. Technol., 2021, 84(0): 147-158. |
[4] | Xianliang Hou, Shun Yao, Zhen Wang, Changqing Fang, Tiehu Li. Enhancement of the mechanical properties of polylactic acid/basalt fiber composites via in-situ assembling silica nanospheres on the interface [J]. J. Mater. Sci. Technol., 2021, 84(0): 182-190. |
[5] | Peixing Chen, Sixiang Wang, Zhi Huang, Yan Gao, Yu Zhang, Chunli Wang, Tingting Xia, Linhao Li, Wanqian Liu, Li Yang. Multi-functionalized nanofibers with reactive oxygen species scavenging capability and fibrocartilage inductivity for tendon-bone integration [J]. J. Mater. Sci. Technol., 2021, 70(0): 91-104. |
[6] | Lulu Li, Irene J. Beyerlein, Weizhong Han. Interface-facilitated stable plasticity in ultra-fine layered FeAl/FeAl2 micro-pillar at high temperature [J]. J. Mater. Sci. Technol., 2021, 73(0): 61-65. |
[7] | Chendong Zhao, Jinshan Li, Yudong Liu, William Yi Wang, Hongchao Kou, Eric Beaugnon, Jun Wang. Tailoring mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via phase transformation [J]. J. Mater. Sci. Technol., 2021, 73(0): 83-90. |
[8] | Baoquan Wan, Haiyu Li, Yunhui Xiao, Zhongbin Pan, Qiwei Zhang. Improved breakdown strength and energy density of polyimide composites by interface engineering between BN and BaTiO3 fibers [J]. J. Mater. Sci. Technol., 2021, 74(0): 1-10. |
[9] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Interface strengthening in dissimilar double-sided friction stir spot welding of AZ31/ZK60 magnesium alloys by adjustable probes [J]. J. Mater. Sci. Technol., 2021, 85(0): 158-168. |
[10] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
[11] | Fu Zhang, Zhu Ma, Taotao Hu, Rui Liu, Qiaofeng Wu, Yu Yue, Hua Zhang, Zheng Xiao, Meng Zhang, Wenfeng Zhang, Xin Chen, Hua Yu. Ultra-smooth CsPbI2Br film via programmable crystallization process for high-efficiency inorganic perovskite solar cells [J]. J. Mater. Sci. Technol., 2021, 66(0): 150-156. |
[12] | Chendong Zhao, Jinshan Li, Yudong Liu, Xiao Ma, Yujie Jin, William Yi Wang, Hongchao Kou, Jun Wang. Optimizing mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via FCC to BCC phase transformation [J]. J. Mater. Sci. Technol., 2021, 86(0): 117-126. |
[13] | Yan Ma, Muxin Yang, Fuping Yuan, Xiaolei Wu. Deformation induced hcp nano-lamella and its size effect on the strengthening in a CoCrNi medium-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 82(0): 122-134. |
[14] | Zhufeng He, Nan Jia, Hongwei Wang, Haile Yan, Yongfeng Shen. Synergy effect of multi-strengthening mechanisms in FeMnCoCrN HEA at cryogenic temperature [J]. J. Mater. Sci. Technol., 2021, 86(0): 158-170. |
[15] | Peng Peng, Jinmian Yue, Anqiao Zhang, Xudong Zhang, Yuanli Xu. Analysis on fluid permeability of dendritic mushy zone during peritectic solidification in a temperature gradient [J]. J. Mater. Sci. Technol., 2021, 71(0): 169-176. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||