J. Mater. Sci. Technol. ›› 2020, Vol. 58: 205-214.DOI: 10.1016/j.jmst.2020.03.065
• Research Article • Previous Articles Next Articles
Shuo Wanga, Chi Zhanga, Xin Lia, Houbing Huanga,b, Junsheng Wanga,b,*()
Received:
2020-01-27
Accepted:
2020-03-06
Published:
2020-12-01
Online:
2020-12-17
Contact:
Junsheng Wang
Shuo Wang, Chi Zhang, Xin Li, Houbing Huang, Junsheng Wang. First-principle investigation on the interfacial structure evolution of the δ'/θ'/δ' composite precipitates in Al-Cu-Li alloys[J]. J. Mater. Sci. Technol., 2020, 58: 205-214.
Fig. 1. Schematic diagram of the charge density for A and B parts and the entire configuration, where the δ” is an anti-phase response to the δ'. Note, in the following, this designation is used, unless otherwise specified.
Fig. 2. (a) Simplified diagram of the HAADF-STEM image viewed along with the [001]Al direction. (b) According to the side view (a), all possible interface structures: (b1) the hollow-coordinated 1, (b2) the top-coordinated 1, (b3) the top-coordinated 2, (b4) the hollow-coordinated 2. Note the two nearest-neighboring atomic layers around the interfaces are highlighted as black-dashed lines. For the side and top views of each model, the solid balls indicate the atoms of the upper-layer right above the interface (annotated as 1), and the open balls are the opposite (annotated as 0.5).
Fig. 3. The interface formation energy per atom (ΔG) calculated for the top1 (XI) and the hollow2 (XII) interface models as a function of the number of Li-layers (M(Li-layers)) for L12-δ' phase at one side of the θ': (a) two Cu layers (N(Cu-layers) = 2) inside the θ' phase; (b) three Cu layers (N(Cu-layers) = 3) inside the θ' phase.
Fig. 4. Schematic diagram of the transition process from “in-phase” to “anti-phase” in model XII, the transferred δ' as indicated by the dotted line. (a1) and (b1) represent the δ'/θ'/δ' with an in-phase relationship. (a2) and (a3) are the related “anti-phase 1/2[010]” responding to (a1). (b3) is the related “anti-phase 1/2[110]” responding to (b1). (a4) and (b4) show top-views of the interfacial portion (corresponds to a row of atoms in the solid line frame in (a3) and (b3), respectively) during the transition. Here the red dashed line corresponds to the “in-phase”, purple and blue dashed lines correspond to the “anti-phase 1/2[010]”, and the “anti-phase 1/2[110]”, respectively.
Fig. 5. The interface formation energy per atom (ΔG) calculated for the δ'/θ'/δ' with various relationships as a function of the number of Li-layers (M(Li-layers)) for L12-δ' phase at one side of the θ': (a) two Cu layers (N(Cu-layers) = 2) inside the θ' phase; (b) three Cu layers (N(Cu-layers) = 3) inside the θ' phase. Here, ΔE represents the energy barrier from “anti-phase 1/2[010]” to “in-phase”. ΔE' represents the energy difference from “anti-phase 1/2[110]” to “in-phase”.
Fig. 6. The interface formation energy per atom as a function of the normalized interface area per atom for in-phase (blue), out-phase 1/2[010] (red), and out-phase 1/2[110] (purple). The calculated values of interfacial energy γ (eV/?2) and coherent strain energy ΔGcs (eV/atom) have been calculated.
Fig. 7. The contour plots of the charge density difference of the δ'/θ'/δ' with 2 Cu-layers on the (010) plane: (a) the entire configuration with highlighted (010) and 1/2(010) planes. (b1), (c1) the contour plots of the charge density difference of the in-phase interface at 1/2(010) plane and 1(010) planes, respectively; (b2), (c2) the contour plots of the charge density difference of the anti-phase interface of the 1/2(010) plane and 1(010) planes, respectively; (b3), (c3) the contour plots of the charge density difference of the anti-phase interface of the 1/2(010) plane and (010) planes, respectively. The upper and lower-case Roman numbers (I, II, III, i, and ii) inside the graph correspond to Al-Li bond and Al-Al bond.
Fig. 8. The contour plots of the charge density difference of the δ'/θ'/δ' with 3 Cu-layers on the (010) plane. (a) The entire configuration with highlighted (010) and 1/2(010) planes. (b1, c1) The contour plots of the charge density difference of the in-phase interface at 1/2(010) plane and 1(010) planes, respectively. (b2, c2) The contour plots of the charge density difference of the anti-phase interface of the 1/2(010) plane and 1(010) planes, respectively. (b3, c3) The contour plots of the charge density difference of the anti-phase interface of the 1/2(010) plane and (010) planes, respectively. The upper and lower-case Roman numbers (I, II, III, i, and ii) inside the graph correspond to Al-Li bonds and Al-Al bonds.
Fig. 9. The calculated stress-strain relations of δ'/θ'/δ' with 2 Cu-layers in various tension deformation directions and the ideal strengths of the θ' and δ' phases in the [001] direction.
Fig. 10. The calculated Li-Cu and Li-interface distances (where the δ'/θ'/δ' has 2 Cu-layers with an “anti-phase 1/2[110]” relationship) as a function of the applied strain under the [001] tensile direction. (a) The entire configuration with highlighted Li-Cu and Li-interface distances. (c) The side view of the δ'/θ'/δ' in [100] direction at three strain stages corresponding to (b).
Fig. 11. The entire configuration (a) and crystal orbital Hamilton population (COHP) analysis of (b1) Li-Al3, (b2) Al1-Al2, and (b3) Li-Cu bonding interactions in the δ'/θ'/δ' with the “anti-phase 1/2[110]” relationship. The ICOHP values (in eV/bond) are listed here to show the corresponding interactions (black) and main orbital pair contributions to these (colored).
[1] | R.J. Rioja, Mater. Sci. Eng. A 257 (1998) 100-107. |
[2] | T.H. Sanders, E.A. Starke, Acta Mater. 30 (1982) 927-939. |
[3] | F.W. Gayle, F.H. Heubaum, J.R. Pickens, Scr. Metall. Mater. 24 (1990) 79-84. |
[4] | C. Thakur, R. Balasubramaniam, Acta Mater. 45 (1997) 1323-1332. |
[5] | B. Decreus, A. Deschamps, F.D. Geuser, P. Donnadieu, C. Sigli, M. Weyland, Acta Mater. 61 (2013) 2207-2218. |
[6] |
W.A. Cassada, G.J. Shiflet, E.A. Starke, Acta Mater. 34 (1986) 367-378.
DOI URL |
[7] | R.A. Herring, F.W. Gayle, J.R. Pickens, J. Mater. Sci. 28 (1993) 69-73. |
[8] | E.J. Lavernia, T.S. Srivatsan, F.A. Mohamed, J. Mater. Sci. 25 (1990) 1137-1158. |
[9] | B. Noble, G.E. Thompson, Metal Sci. J. 6 (1972) 167-174. |
[10] | Z. Gao, J.Z. Liu, J.H. Chen, J. Alloys. Compd. 624 (2015) 22-26. |
[11] | R. Yoshimura, T.J. Konno, E. Abe, K. Hiraga, Acta Mater. 51 (2003) 2891-2903. |
[12] | S.Y. Duan, C.L. Wu, Z. Gao, L.M. Cha, T.W. Fan, J.H. Chen, Acta Mater. 129 (2017) 352-360. |
[13] | M.J. Guinel, N. Brodusch, G. Sha, M.A. Shandiz, H. Demers, M. Trudeau, S.P. Ringer, R. Gauvin, J. Microsc. 255 (2014) 128-137. |
[14] | J.M. Howe, J. Lee, A.K. Vasudévan, Metall. Trans. A 9 (1988) 2911-2920. |
[15] | P. Schlossmacher, D. Klenov, B. Freitag, H.J. Von Harrach , Microsc. Today 8 (2010) 14-20. |
[16] |
S. Maintz, V.L. Deringer, A.L. Tchougreeff, R. Dronskowski, J. Comput. Chem. 34 (2013) 2557-2567.
URL PMID |
[17] | G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169-11186. |
[18] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
URL PMID |
[19] | G. Kresse, M. Marsman, J. Furthmüller, Vienna Ab-initio Simulation Package: VASP the Guide, Universität Wien, Austria, 2014. |
[20] | I.T.A. Togo, Scr. Mater. 108 (2015) 1-5. |
[21] | S. Nosé, Prog. Theor. Phys. Suppl. 103 (1991) 1-46. |
[22] | S. Wang, Y.H. Zhao, H. Hou, Z.Q. Wen, P.L. Zhang, J.Q. Liang, J. Solid State Chem. 263 (2018) 18-23. |
[23] | V. Wang, N. Xu, J.C. Liu, G. Tang, W.T. Geng, VASPKIT: A Pre- and Post-Processing Program for VASP Code, 2019. |
[24] | D. Roundy, C.R. Krenn, M.L. Cohen, J.W. Morris, Phys. Rev. Lett. 82 (1999) 2713. |
[25] |
Y. Li, J. Hao, H.Y. Liu, S.Y. S, J.S. Tse, Phys. Rev. Lett. 115 (2015), 105502.
URL PMID |
[26] | K. Kim, B.C. Zhou, C. Wolverton, Scr. Mater. 159 (2019) 99-103. |
[27] | Z.Q. Li, J.S. Tse, Phys. Rev. B 61 (2000) 14531. |
[28] | S. He, P. Peng, L. Peng, Y. Chen, H. Wei, Z.Q. Hu, J. Alloys. Compd. 597 (2014) 243-248. |
[29] | A. Biswas, D.J. Siegel, C. Wolverton, D.N. Seidman, Acta Mater. 59 (2011) 6187-6204. |
[30] | J. Lendvai, H.J. Gudladt, V. Gerold, Scr. Metall. 22 (1988) 1755-1760. |
[31] | S.C. Wang, M.J. Starink, Int. Mater. Rev. 50 (2013) 193-215. |
[32] | V. Vaithyanathan, C. Wolverton, L.Q. Chen, Acta Mater. 52 (2004) 2973-2987. |
[33] | C. Zhang, Y. Jiang, F. Cao, T. Hu, Y. Wang, D. Yin, J. Mater. Sci. Technol. 35 (2019) 930-938. |
[1] | Xiaofei Cui, Wei Fu, Daqing Fang, Guangli Bi, Zijun Ren, Shengwu Guo, Suzhi Li, Xiangdong Ding, Jun Sun. Mechanical properties and deformation mechanisms of a novel fine-grained Mg-Gd-Y-Ag-Zr-Ce alloy with high strength-ductility synergy [J]. J. Mater. Sci. Technol., 2021, 66(0): 64-73. |
[2] | Yifan Wang, Yanli Lu, Jing Zhang, Wenchao Yang, Changlin Yang, Pan Wang, Xiaoqing Song, Zheng Chen. Investigation of the 12 orientations variants of nanoscale Al precipitates in eutectic Si of Al-7Si-0.6Mg alloy [J]. J. Mater. Sci. Technol., 2021, 67(0): 186-196. |
[3] | Yang Wang, Shun Zhang, Ruizhi Wu, Nodir Turakhodjaev, Legan Hou, Jinghuai Zhang, Sergey Betsofen. Coarsening kinetics and strengthening mechanisms of core-shell nanoscale precipitates in Al-Li-Yb-Er-Sc-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 197-203. |
[4] | Xiaoxiao Wei, Li Jin, Fenghua Wang, Jing Li, Nan Ye, Zhenyan Zhang, Jie Dong. High strength and ductility Mg-8Gd-3Y-0.5Zr alloy with bimodal structure and nano-precipitates [J]. J. Mater. Sci. Technol., 2020, 44(0): 19-23. |
[5] | Weiyi Wang, Qinglin Pan, Geng Lin, Xiaoping Wang, Yuqiao Sun, Xiangdong Wang, Ji Ye, Yuanwei Sun, Yi Yu, Fuqing Jiang, Jun Li, Yaru Liu. Microstructure and properties of novel Al-Ce-Sc, Al-Ce-Y, Al-Ce-Zr and Al-Ce-Sc-Y alloy conductors processed by die casting, hot extrusion and cold drawing [J]. J. Mater. Sci. Technol., 2020, 58(0): 155-170. |
[6] | Qiang Lu, Kai Li, Haonan Chen, Mingjun Yang, Xinyue Lan, Tong Yang, Shuhong Liu, Min Song, Lingfei Cao, Yong Du. Simultaneously enhanced strength and ductility of 6xxx Al alloys via manipulating meso-scale and nano-scale structures guided with phase equilibrium [J]. J. Mater. Sci. Technol., 2020, 41(0): 139-148. |
[7] | Tao Yuan, Xin Song, Xianglong Zhou, Wentao Jia, Munzali Musa, Jingdong Wang, Tianyu Ma. Role of primary Zr-rich particles on microstructure and magnetic properties of 2:17-type Sm-Co-Fe-Cu-Zr permanent magnets [J]. J. Mater. Sci. Technol., 2020, 53(0): 73-81. |
[8] | Wenyin Xue, Jinhua Zhou, Yongfeng Shen, Weina Zhang, Zhenyu Liu. Micromechanical behavior of a fine-grained China low activation martensitic (CLAM) steel [J]. J. Mater. Sci. Technol., 2019, 35(9): 1869-1876. |
[9] | Bin Liu, Yuchen Liu, Changhua Zhu, Huimin Xiang, Hongfei Chen, Luchao Sun, Yanfeng Gao, Yanchun Zhou. Advances on strategies for searching for next generation thermal barrier coating materials [J]. J. Mater. Sci. Technol., 2019, 35(5): 833-851. |
[10] | Chaomin Zhang, Yong Jiang, Fuhua Cao, Tao Hu, Yiren Wang, Dengfeng Yin. Formation of coherent, core-shelled nano-particles in dilute Al-Sc-Zr alloys from the first-principles [J]. J. Mater. Sci. Technol., 2019, 35(5): 930-938. |
[11] | J.P. Hou, R. Li, Q. Wang, H.Y. Yu, Z.J. Zhang, Q.Y. Chen, H. Ma, X.M. Wu, X.W. Li, Z.F. Zhang. Three principles for preparing Al wire with high strength and high electrical conductivity [J]. J. Mater. Sci. Technol., 2019, 35(5): 742-751. |
[12] | Jinfeng Li, Shuo Xiang, Hengwei Luan, Abdukadir Amar, Xue Liu, Siyuan Lu, Yangyang Zeng, Guomin Le, Xiaoying Wang, Fengsheng Qu, Chunli Jiang, Guannan Yang. Additive manufacturing of high-strength CrMnFeCoNi high-entropy alloys-based composites with WC addition [J]. J. Mater. Sci. Technol., 2019, 35(11): 2430-2434. |
[13] | B. Wurentuya, Shuang Ma, B. Narsu, O. Tegus, Zhidong Zhang. Lattice dynamics of FeMnP0.5Si0.5 compound from first principles calculation [J]. J. Mater. Sci. Technol., 2019, 35(1): 127-133. |
[14] | Xinguang Wang, Guoming Han, Chuanyong Cui, Shuai Guan, Jinguo Li, Guichen Hou, Yizhou Zhou, Xiaofeng Sun. On the γ′ precipitates of the normal and inverse Portevin-Le Châtelier effect in a wrought Ni-base superalloy [J]. J. Mater. Sci. Technol., 2019, 35(1): 84-87. |
[15] | Y.L. Wang, H.C. Jiang, Z.M. Li, D.S. Yan, D. Zhang, L.J. Rong. Two-stage double peaks ageing and its effect on stress corrosion cracking susceptibility of Al-Zn-Mg alloy [J]. J. Mater. Sci. Technol., 2018, 34(7): 1250-1257. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||