J. Mater. Sci. Technol. ›› 2020, Vol. 55: 89-94.DOI: 10.1016/j.jmst.2019.07.027
• Research Article • Previous Articles Next Articles
Kunsik Ana,b,**(), Jaehoon Kima, Mohammad Afsar Uddinc, Seunghyun Rheea, Hyeok Kimd, Kyung-Tae Kangb, Han Young Wooc,*(
), Changhee Leea,*(
)
Received:
2019-03-27
Accepted:
2019-05-28
Published:
2020-10-15
Online:
2020-10-27
Contact:
Kunsik An,Han Young Woo,Changhee Lee
Kunsik An, Jaehoon Kim, Mohammad Afsar Uddin, Seunghyun Rhee, Hyeok Kim, Kyung-Tae Kang, Han Young Woo, Changhee Lee. Germinant ZnO nanorods as a charge-selective layer in organic solar cells[J]. J. Mater. Sci. Technol., 2020, 55: 89-94.
Fig. 1. Cross-sectional scanning electron microscopy (SEM) images of ZnO nanorods (NRs) after (a) 60 min, (b) 70 min, (c) 80 min, (d) 90 min, and (e) 100 min growth time and (f) a top-view image of ZnO NRs after 100 min growth time.
Fig. 2. (a) Length profile of the ZnO nanorods (NRs), temperature of precursor solution as a function of growth time and (b) X-ray diffraction (XRD) patterns of the ZnO NRs with respect to growth time (black arrow: ZnO diffraction standards: JCPDS 36-1451) and (c) ratio of (002) peak to (101) peak.
Peak | Length | ||||
---|---|---|---|---|---|
45 nm | 85 nm | 145 nm | 190 nm | 265 nm | |
(002) | 583 | 683 | 925 | 1278 | 1670 |
(101) | 105 | 103 | 99 | 97 | 102 |
(002)(101) | 5.55 | 6.63 | 9.34 | 13.17 | 16.37 |
Table 1 X-ray diffraction (XRD) peak ratio of ZnO nanorods (NRs) with respect to growth time.
Peak | Length | ||||
---|---|---|---|---|---|
45 nm | 85 nm | 145 nm | 190 nm | 265 nm | |
(002) | 583 | 683 | 925 | 1278 | 1670 |
(101) | 105 | 103 | 99 | 97 | 102 |
(002)(101) | 5.55 | 6.63 | 9.34 | 13.17 | 16.37 |
Fig. 3. UV/Vis absorption spectra of (a) ZnO nanorods (NRs) with respect to length variation and (b) PPDT2FBT:PC70BM layer deposited on ZnO NR arrays of various length (line), ZnO NRs arrays without PPDT2FBT:PC70BM deposition (dotted line).
Fig. 4. (a) Schematic illustration, (b) cross-sectional transmission electron microscopy (TEM) images of ZnO nanorods (NRs) organic solar cells (OSCs), current-voltage (J-V) characteristics and incident photon-to-current conversion efficiency (IPCE) of devices with (c, e) 170-nm- and (d, f) 290-nm-thick active layers, respectively.
Active layer thickness | ZnO NRs Length | JSC (mA cm-2) | VOC (V) | FF | PCE (%) |
---|---|---|---|---|---|
170 nm | 45 nm | 13.3 ± 0.65 | 0.75 ± 0.02 | 0.57 ± 0.02 | 5.62 ± 0.13 |
85 nm | 13.8 ± 0.85 | 0.75 ± 0.02 | 0.57 ± 0.03 | 5.91 ± 0.19 | |
145 nm | 12.5 ± 1.02 | 0.71 ± 0.04 | 0.58 ± 0.02 | 5.12 ± 0.09 | |
290 nm | 45 nm | 15.9 ± 0.17 | 0.71 ± 0.01 | 0.54 ± 0.01 | 6.10 ± 0.13 |
145 nm | 14.5 ± 0.46 | 0.73 ± 0.02 | 0.58 ± 0.01 | 6.20 ± 0.17 | |
190 nm | 14.4 ± 0.29 | 0.70 ± 0.01 | 0.56 ± 0.01 | 5.65 ± 0.01 | |
265 nm | 12.9 ± 0.21 | 0.58 ± 0.03 | 0.52 ± 0.01 | 3.89 ± 0.31 |
Table 2 Performance parametersa of organic solar cells (OSCs) with respect to the active layer thickness and ZnO nanorod (NR) length.
Active layer thickness | ZnO NRs Length | JSC (mA cm-2) | VOC (V) | FF | PCE (%) |
---|---|---|---|---|---|
170 nm | 45 nm | 13.3 ± 0.65 | 0.75 ± 0.02 | 0.57 ± 0.02 | 5.62 ± 0.13 |
85 nm | 13.8 ± 0.85 | 0.75 ± 0.02 | 0.57 ± 0.03 | 5.91 ± 0.19 | |
145 nm | 12.5 ± 1.02 | 0.71 ± 0.04 | 0.58 ± 0.02 | 5.12 ± 0.09 | |
290 nm | 45 nm | 15.9 ± 0.17 | 0.71 ± 0.01 | 0.54 ± 0.01 | 6.10 ± 0.13 |
145 nm | 14.5 ± 0.46 | 0.73 ± 0.02 | 0.58 ± 0.01 | 6.20 ± 0.17 | |
190 nm | 14.4 ± 0.29 | 0.70 ± 0.01 | 0.56 ± 0.01 | 5.65 ± 0.01 | |
265 nm | 12.9 ± 0.21 | 0.58 ± 0.03 | 0.52 ± 0.01 | 3.89 ± 0.31 |
Fig. 5. Power conversion efficiency (PCE) variations of organic solar cells (OSCs) depending on the active layer thickness and ZnO nanorod (NR) length.
[1] |
W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, J. Hou, J. Am. Chem. Soc. 139 (2017) 7148-7151.
DOI URL PMID |
[2] |
B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131 (2009) 3985-3990.
DOI URL PMID |
[3] | H.S. Kim, J.W. Lee, N. Yantara, P.P. Boix, S.A. Kulkarni, S. Mhaisalkar, M. Grätzel, N.G. Park, Nano Lett. 13 (2013) 2412-2417. |
[4] |
J. Jiu, S. Isoda, F. Wang, M. Adachi, J. Phys. Chem. B 110 (2006) 2087-2092.
DOI URL PMID |
[5] |
G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Nano Lett. 6 (2006) 215-218.
DOI URL PMID |
[6] | D.-Y. Son, J.-H. Im, H.-S. Kim, N.-G. Park, J. Phys. Chem. C 118 (2014) 16567-16573. |
[7] | C. Justin Raj, S.N. Karthick, S. Park, K.V. Hemalatha, S.-K. Kim, K. Prabakar, H.-J. Kim, J. Power Sources 248 (2014) 439-446. |
[8] | Y. Hames, Z. Alpaslan, A. Kösemen, S.E. San, Y. Yerli, Sol. Energy 84 (2010) 426-431. |
[9] | H.E. Unalan, P. Hiralal, D. Kuo, B. Parekh, G. Amaratunga, M. Chhowalla, J. Mater. Chem. 18 (2008) 5909-5912. |
[10] | D.C. Olson, J. Piris, R.T. Collins, S.E. Shaheen, D.S. Ginley, Thin Solid Films 496 (2006) 26-29. |
[11] | H.H. Hsieh, Y.M. Sung, F.C. Hsu, K.J. Hsiao, Y.J. Lee, Y.F. Chen, RSC Adv. 5 (2015) 1549-1556. |
[12] |
H. Song, K.H. Lee, H. Jeong, S.H. Um, G.S. Han, H.S. Jung, G.Y. Jung, Nanoscale 5 (2013) 1188-1194.
DOI URL PMID |
[13] | T. Qi, Q. Wang, Y. Zhang, D. Wang, R. Yang, W. Zheng, Mater. Des. 112 (2016) 436-441. |
[14] | K. Karthick, U. Nithiyanantham, S.R. Ede, S. Kundu, ACS Sustain. Chem. Eng. 4 (2016) 3174-3188. |
[15] | A. Le Viet, R. Jose, M.V. Reddy, B.V.R. Chowdari, S. Ramakrishna, J. Phys. Chem.C 114 (2010) 21795-21800. |
[16] |
E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, G. Boschloo, J. Phys. Chem. B 110 (2006) 16159-16161.
DOI URL PMID |
[17] |
M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nat. Mater. 4 (2005) 455.
DOI URL PMID |
[18] | Z. Jie, B. Philippe, P. Thierry, Adv. Energy Mater. 4 (2014), 1400932. |
[19] |
M. Law, L.E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, P. Yang, J. Phys. Chem. B 110 (2006) 22652-22663.
DOI URL PMID |
[20] | S.H. Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, C.P. Grigoropoulos, H.J. Sung, Nano Lett. 11 (2011) 666-671. |
[21] | J.B. Baxter, E.S. Aydil, Appl. Phys. Lett. 86 (2005) 53114. |
[22] |
X. Lan, J. Bai, S. Masala, S.M. Thon, Y. Ren, I.J. Kramer, S. Hoogland, A. Simchi, G.I. Koleilat, D. Paz-Soldan, Z.Ning A.J. Labelle, J.Y. Kim, G. Jabbour, E.H. Sargent, Adv. Mater. 25 (2013) 1769-1773.
DOI URL PMID |
[23] |
D. Bi, G. Boschloo, S. Schwarzmuller, L. Yang, E.M.J. Johansson, A. Hagfeldt, Nanoscale 5 (2013) 11686-11691.
DOI URL PMID |
[24] | D.Y. Son, K.H. Bae, H.S. Kim, N.G. Park, J. Phys. Chem. C 119 (2015) 10321-10328. |
[25] | Z. Jie, B. Philippe, P. Thierry, Adv. Energy Mater. 4 (2014), 1400932. |
[26] |
S.H. Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, C.P. Grigoropoulos, H.J. Sung, Nano Lett. 11 (2011) 666-671.
DOI URL PMID |
[27] | M.J. Jin, J. Jo, J.W. Yoo, Org. Electron. 19 (2015) 83-91. |
[28] | Y. Terao, H. Sasabe, C. Adachi, Appl. Phys. Lett. 90 (2007), 103515. |
[29] |
K.L. Foo, U. Hashim, K. Muhammad, C.H. Voon, Nanoscale Res. Lett. 9 (2014) 429.
DOI URL PMID |
[30] | Z.L. Wang, Mater. Sci. Eng. R 64 (2009) 33-71. |
[31] | T.L. Nguyen, H. Choi, S.-J. Ko, M.A. Uddin, B. Walker, S. Yum, J.E. Jeong, M.H. Yun, T.J. Shin, S. Hwang, J.Y. Kim, H.Y. Woo, Energy Environ. Sci. 7 (2014) 3040-3051. |
[32] | P.S. Mbule, T.H. Kim, B.S. Kim, H.C. Swart, O.M. Ntwaeaborwa, Sol. Energy Mater. Sol. Cells 112 (2013) 6-12. |
[1] | Xiaofang Ye, Hongkun Cai, Jian Su, Jingtao Yang, Jian Ni, Juan Li, Jianjun Zhang. Preparation of hysteresis-free flexible perovskite solar cells via interfacial modification [J]. J. Mater. Sci. Technol., 2021, 61(0): 213-220. |
[2] | Jing Li, Zhenqiang Feng, Ning Gu, Fang Yang. Superparamagnetic iron oxide nanoparticles assembled magnetic nanobubbles and their application for neural stem cells labeling [J]. J. Mater. Sci. Technol., 2021, 63(0): 124-132. |
[3] | Tingting Wu, Guoqiang Deng, Chao Zhen. Metal oxide mesocrystals and mesoporous single crystals: synthesis, properties and applications in solar energy conversion [J]. J. Mater. Sci. Technol., 2021, 73(0): 9-22. |
[4] | InSu Jin, Minwoo Park, Jae Woong Jung. Reduced interface energy loss in non-fullerene organic solar cells using room temperature-synthesized SnO2 quantum dots [J]. J. Mater. Sci. Technol., 2020, 52(0): 12-19. |
[5] | Sukanta Bose, Sourav Mandal, Asok K. Barua, Sumita Mukhopadhyay. Properties of boron doped ZnO films prepared by reactive sputtering method: Application to amorphous silicon thin film solar cells [J]. J. Mater. Sci. Technol., 2020, 55(0): 136-143. |
[6] | Liquan Yao, Limei Lin, Hui Liu, Fengying Wu, Jianmin Li, Shuiyuan Chen, Zhigao Huang, Guilin Chen. Front and Back contact engineering for high-efficient and low-cost hydrothermal derived Sb2(S, Se)3 solar cells by using FTO/SnO2 and carbon [J]. J. Mater. Sci. Technol., 2020, 58(0): 130-137. |
[7] | Kyungeun Jung, Du Hyeon Kim, Jaemin Kim, Sunglim Ko, Jae Won Choi, Ki Chul Kim, Sang-Geul Lee, Man-Jong Lee. Influence of a UV-ozone treatment on amorphous SnO2 electron selective layers for highly efficient planar MAPbI3 perovskite solar cells [J]. J. Mater. Sci. Technol., 2020, 59(0): 195-202. |
[8] | Youzuo Hu, Hongyuan Zhao, Ming Tan, Jintao Liu, Xiaohui Shu, Meiling Zhang, Shanshan Liu, Qiwen Ran, Hao Li, Xingquan Liu. Synthesis of α-LiFeO2/Graphene nanocomposite via layer by layer self-assembly strategy for lithium-ion batteries with excellent electrochemical performance [J]. J. Mater. Sci. Technol., 2020, 55(0): 173-181. |
[9] | Tao Liu, Caizhen Zhu, Wei Wu, Kai-Ning Liao, Xianjing Gong, Qijun Sun, Robert K.Y. Li. Facilely prepared layer-by-layer graphene membrane-based pressure sensor with high sensitivity and stability for smart wearable devices [J]. J. Mater. Sci. Technol., 2020, 45(0): 241-247. |
[10] | Wang Jian, Cui Lanyue, Ren Yande, Zou Yuhong, Ma Jinlong, Wang Chengjian, Zheng Zhongyin, Chen Xiaobo, Zeng Rongchang, Zheng Yufeng. In vitro and in vivo biodegradation and biocompatibility of an MMT/BSA composite coating upon magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2020, 47(0): 52-67. |
[11] | Noh Young Wook, Jin In Su, Park Sang Hyun, Jung Jae Woong. Room-temperature synthesis of ZrSnO4 nanoparticles for electron transport layer in efficient planar hetrojunction perovskite solar cells [J]. J. Mater. Sci. Technol., 2020, 42(0): 38-45. |
[12] | Mingli Lin, Huanhuan Liu, Jingjing Deng, Ran An, Minjuan Shen, Yanqiu Li, Xu Zhang. Carboxymethyl chitosan as a polyampholyte mediating intrafibrillar mineralization of collagen via collagen/ACP self-assembly [J]. J. Mater. Sci. Technol., 2019, 35(9): 1894-1905. |
[13] | Johwa Yang, Hyunjin Jo, Soo-Won Choi, Dong-Won Kang, Jung-Dae Kwon. Adoption of wide-bandgap microcrystalline silicon oxide and dual buffers for semitransparent solar cells in building-integrated photovoltaic window system [J]. J. Mater. Sci. Technol., 2019, 35(8): 1563-1569. |
[14] | Qian-Qian Chu, Bin Ding, Jun Peng, Heping Shen, Xiaolei Li, Yan Liu, Cheng-Xin Li, Chang-Jiu Li, Guan-Jun Yang, Thomas P. White, Kylie R. Catchpole. Highly stable carbon-based perovskite solar cell with a record efficiency of over 18% via hole transport engineering [J]. J. Mater. Sci. Technol., 2019, 35(6): 987-993. |
[15] | Mingyue Li, Na Yuan, Yiwen Tang, Ling Pei, Yongdan Zhu, Jiaxian Liu, Lihua Bai, Meiya Li. Performance optimization of dye-sensitized solar cells by gradient-ascent architecture of SiO2@Au@TiO2 microspheres embedded with Au nanoparticles [J]. J. Mater. Sci. Technol., 2019, 35(4): 604-609. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||