J. Mater. Sci. Technol. ›› 2020, Vol. 55: 136-143.DOI: 10.1016/j.jmst.2019.12.004
• Research Article • Previous Articles Next Articles
Sukanta Bosea, Sourav Mandalb,*(), Asok K. Baruaa, Sumita Mukhopadhyaya
Received:
2019-06-23
Accepted:
2019-10-22
Published:
2020-10-15
Online:
2020-10-27
Contact:
Sourav Mandal
Sukanta Bose, Sourav Mandal, Asok K. Barua, Sumita Mukhopadhyay. Properties of boron doped ZnO films prepared by reactive sputtering method: Application to amorphous silicon thin film solar cells[J]. J. Mater. Sci. Technol., 2020, 55: 136-143.
Parameters | Value |
---|---|
Working pressure (mbar) | 0.01 |
Substrate temperature (°C) | 275 |
Target-substrate distance (cm) | 7 |
Sputtering power density(W/cm2) | 2.25 |
Film thickness (nm) approx | 900 |
Ar: 1 % B2H6 in H2 (flow in sccm) | 5:0.75, 5:1.00, 5:1.25, 5:1.50, 5:1.75, 5:2.00 |
Table 1 Process parameters for the development of BZO layers.
Parameters | Value |
---|---|
Working pressure (mbar) | 0.01 |
Substrate temperature (°C) | 275 |
Target-substrate distance (cm) | 7 |
Sputtering power density(W/cm2) | 2.25 |
Film thickness (nm) approx | 900 |
Ar: 1 % B2H6 in H2 (flow in sccm) | 5:0.75, 5:1.00, 5:1.25, 5:1.50, 5:1.75, 5:2.00 |
Sample ID | PB2H6 | Lattice spacing, d (?) | Lattice parameter, c (?) | Strain (× 10-3) | Stress (GPa) |
---|---|---|---|---|---|
BZO-1 | 13.04 | 2.614 | 5.228 | 4.41 | -1.02 |
BZO-2 | 16.67 | 2.612 | 5.224 | 3.65 | -0.85 |
BZO-3 | 20.00 | 2.606 | 5.212 | 1.34 | -0.31 |
BZO-4 | 23.08 | 2.617 | 5.234 | 5.57 | -1.30 |
BZO-5 | 25.93 | 2.618 | 5.236 | 5.95 | -1.39 |
BZO-6 | 28.57 | 2.619 | 5.238 | 6.34 | -1.48 |
Table 2 Strain, stress, lattice spacing & lattice parameter of BZO layers.
Sample ID | PB2H6 | Lattice spacing, d (?) | Lattice parameter, c (?) | Strain (× 10-3) | Stress (GPa) |
---|---|---|---|---|---|
BZO-1 | 13.04 | 2.614 | 5.228 | 4.41 | -1.02 |
BZO-2 | 16.67 | 2.612 | 5.224 | 3.65 | -0.85 |
BZO-3 | 20.00 | 2.606 | 5.212 | 1.34 | -0.31 |
BZO-4 | 23.08 | 2.617 | 5.234 | 5.57 | -1.30 |
BZO-5 | 25.93 | 2.618 | 5.236 | 5.95 | -1.39 |
BZO-6 | 28.57 | 2.619 | 5.238 | 6.34 | -1.48 |
Fig. 7. Transmission and reflection spectra of BZO films with different PB2H6. The inset shows the effect of B2H6 gas concentration ratio on the lower wavelength transmission.
Fig. 8. Plot of (αhυ)2 vs. photon energy (hυ) of BZO thin films prepared at different PB2H6. The inset shows the optical bandgap variation with PB2H6.
Device ID | Substrate type | Voc (V) | Jsc (mA/cm2) | FF (%) | η (%) |
---|---|---|---|---|---|
Cell-A | BZO-1 | 0.880 | 12.97 | 69.0 | 7.87 |
Cell -B | BZO-2 | 0.879 | 13.11 | 68.8 | 7.92 |
Cell -C | BZO-3 | 0.877 | 13.56 | 68.5 | 8.14 |
Cell -D | BZO-4 | 0.878 | 12.89 | 68.9 | 7.79 |
Cell -E | BZO-5 | 0.881 | 12.77 | 68.9 | 7.75 |
Cell -F | BZO-6 | 0.882 | 12.63 | 69.0 | 7.68 |
Table 3 Comparison table of J-V parameters of the devices fabricated on different BZO substrates.
Device ID | Substrate type | Voc (V) | Jsc (mA/cm2) | FF (%) | η (%) |
---|---|---|---|---|---|
Cell-A | BZO-1 | 0.880 | 12.97 | 69.0 | 7.87 |
Cell -B | BZO-2 | 0.879 | 13.11 | 68.8 | 7.92 |
Cell -C | BZO-3 | 0.877 | 13.56 | 68.5 | 8.14 |
Cell -D | BZO-4 | 0.878 | 12.89 | 68.9 | 7.79 |
Cell -E | BZO-5 | 0.881 | 12.77 | 68.9 | 7.75 |
Cell -F | BZO-6 | 0.882 | 12.63 | 69.0 | 7.68 |
Fig. 12. (a) J-V characteristics, (b) normalized EQE and reflection of the a-Si solar cell fabricated on BZO-3 substrates, (c) the enlarge cross-sectional image of the BZO and a-Si solar cell interface, (d) the cross-sectional image of the full a-Si solar cell with BZO as front contact.
[1] | W.W. Wenas, A. Yamada, K. Takahashi, M. Yoshino, M. Konagai, J. Appl. Phys. 70 (1991) 7119-7123. |
[2] | T. Minami, H. Sato, H. Imamoto, S. Takata, Jpn. J. Appl. Phys. 31 (1992) L257-L260. |
[3] | R. Wang, A.W. Sleight, D. Cleary, Chem. Mater. 8 (1996) 433-439. |
[4] | K.J. Kim, Y.R. Park, Appl. Phys. Lett. 78 (2001) 475-477. |
[5] | H.S. Yoon, K.S. Lee, T.S. Lee, B. Cheong, D.K. Choi, D.H. Kim, W.M. Kim, Sol. Energy Mater. Sol. Cells 92 (2008) 1366-1372. |
[6] | B. Wen, C.Q. Liu, N. Wang, H.L. Wang, S.M. Liu, W.W. Jiang, W.Y. Ding, W.D. Fei, W.P. Chai, Appl. Phys. A 121 (2015) 1147-1153. |
[7] | S. Jana, A.S. Vuk, A. Mallick, B. Orel, P.K. Biswas, Mater. Res. Bull. 46 (2011) 2392-2397. |
[8] | T. Nakada, Y. Ohkubo, N. Murakami, A. Kunioka, Jpn. J. Appl. Phys. 34 (1995) 3623-3627. |
[9] | Y. Hagiwara, T. Nakada, A. Kunioka, Sol. Energy Mater. Sol. Cells 67 (2001) 267-271. |
[10] | K. Maejima, T. Koida, H. Sai, T. Matsui, K. Saito, M. Kondo, T. Takagawa, Thin Solid Films 559 (2014) 83-87. |
[11] | X.L. Chen, B.H. Xu, J.M. Xue, Y. Zhao, C.C. Wei, J. Sun, Y. Wang, X.D. Zhang, X.H. Geng, Thin Solid Films 515 (2007) 3753-3759. |
[12] | B. Houng, C.-L. Huang, S.-Y. Tsai, J. Cryst. Growth 307 (2007) 328-333. |
[13] | V. Kumar, V. Kumar, S. Som, L.P. Purohit, O.M. Ntwaeaborwa, H.C. Swart, J. Alloys. Compd. 594 (2014) 32-38. |
[14] | R.S. Gaikwad, S.S. Bhande, R.S. Mane, B.N. Pawar, S.L. Gaikwad, S.H. Han, O.-S. Joo, Mater. Res. Bull. 47 (2012) 4257-4262. |
[15] |
B.N. Pawar, S.R. Jadkar, M.G. Takwale, J. Phys. Chem. Solids 66 (2005) 1779-1782.
DOI URL |
[16] | Y. Yamamoto, K. Saito, K. Takahashi, M. Konagai, Sol. Energy Mater. Sol. Cells65 (2001) 125-132. |
[17] |
S. Kohiki, M. Nishitani, T. Wada, J. Appl. Phys. 75 (1994) 2069-2072.
DOI URL |
[18] |
Q. Yu, H. Li, Q. Wang, S. Cheng, L. Jiang, Y. Zhang, T. Ai, C. Guo, Mater. Lett. 128 (2014) 284-286.
DOI URL |
[19] |
J. Müller, B. Rech, J. Springer, M. Vanecek, Sol. Energy 77 (2004) 917-930.
DOI URL |
[20] | J. Yin, H. Zhu, Y. Wang, Z. Wang, J. Gao, Y. Mai, Y. Ma, M. Wan, Y. Huang, Appl. Surf. Sci. 259 (2012) 758-763. |
[21] | K. Ellmer, J. Phys. D Appl. Phys. 34 (2001) 3097-3108. |
[22] | X.-Y. Li, H.J. Li, Z.J. Wang, H. Xia, Z.Y. Xiong, J.X. Wang, B.-C. Yang, Opt. Commun. 282 (2009) 247-252. |
[23] | J. Hu, J. Electro Chem. Soc. 139 (1992) 2014. |
[24] | S.-H. Wang, C.-C. Chang, J.S. Chen, J. Vac. Sci. Technol. A 22 (2004) 2145-2151. |
[25] | F.M. D’Heurle, J.M.E. Harper, Thin Solid Films 171 (1989) 81-92. |
[26] | B.D. Cullity, Elements of Diffraction, Addison-Wesley Publishing Company INC, 1978. |
[27] | C.Y. Liu, F. He, Y.F. Zhang, S.G. Zang, Y. Zuo, J.R. Ma, Mater. Technol. 30 (2015) 249-256. |
[28] | L.H. Wong, Y.S. Lai, Thin Solid Films 583 (2015) 205-211. |
[29] | G.J. Fang, D.J. Li, B.L. Yao, Phys. Status Solidi Appl. Res. 193 (2002) 139-152. |
[30] | X. Zeng, X. Wen, X. Sun, W. Liao, Y. Wen, Thin Solid Films 605 (2016) 257-262. |
[31] | K.N. Tu, R. Rosenberg (Eds.), Analytical Techniques for Thin Films, Academic Press, San Diego, 1988. |
[32] | M. Chen, Z.L. Pei, C. Sun, L.S. Wen, X. Wang, J. Cryst. Growth 220 (2000) 254-262. |
[33] | L. Li, L. Fang, X.M. Chen, J. Liu, F.F. Yang, Q.J. Li, G.B. Liu, S.J. Feng, Phys. ELow-Dimension. Syst. Nanostruct. 41 (2008) 169-174. |
[34] | R. Cebulla, R. Wendt, K. Ellmer, J. Appl. Phys. 83 (1998) 1087-1095. |
[35] | D.W. Kang, S.H. Kuk, S.H. Choi, T.H. Moon, H.M. Lee, M.K. Han, IEEE, 2010, pp. 001521-001526. |
[36] | S. Bose, R. Arokiyadoss, P.B. Bhargav, G. Ahmad, S. Mandal, A.K. Barua, S. Mukhopadhyay, Mater. Sci. Semicond. Process. 79 (2018) 135-143. |
[37] | H. Iida, N. Shiba, T. Mishuku, H. Karasawa, A. Ito, M. Yamanaka, Y. Hayashi, IEEE Electron Device Lett. 4 (1983) 157-159. |
[38] | H. Sato, T. Minami, Y. Tamura, S. Takata, T. Mouri, N. Ogawa, Thin Solid Films 246 (1994) 86-91. |
[39] | M.L. Addonizio, C. Diletto, Sol. Energy Mater. Sol. Cells 92 (2008) 1488-1494. |
[40] | J. Steinhauser, S. Fa¨y, N. Oliveira, E. Vallat-Sauvain, D. Zimin, U. Kroll, C. Ballif, Phys. Status Solidi 205 (2008) 1983-1987. |
[41] | S.Y. Myong, J. Steinhauser, R. Schlüchter, S. Fa¨y, E. Vallat-Sauvain, A. Shah, C. Ballif, A. Rüfenacht, Sol. Energy Mater. Sol. Cells 91 (2007) 1269-1274. |
[42] | V. Sittinger, F. Ruske, W. Werner, B. Szyszka, B. Rech, J. Hüpkes, G. Schöpe, H. Stiebig, Thin Solid Films 496 (2006) 16-25. |
[43] | E. Burstein, Phys. Rev. 93 (1954) 632-633. |
[44] | T.S. Moss, Proc. Phys. Soc. Sect. B 67 (1954) 775-782. |
[45] | V. Kumar, R.G. Singh, L.P. Purohit, R.M. Mehra, J. Mater. Sci. Technol. 27 (2011) 481-488. |
[46] |
M. Suchea, S. Christoulakis, N. Katsarakis, T. Kitsopoulos, G. Kiriakidis, Thin Solid Films 515 (2007) 6562-6566.
DOI URL |
[47] |
B.-N. Go, Y. Kim, K. suk Oh, C. Kim, H.-J. Choi, H. Lee, Nanoscale Res. Lett. 9 (2014) 486.
DOI URL PMID |
[48] | H.W. Deckman, C.R. Wronski, H. Witzke, E. Yablonovitch, Appl. Phys. Lett. 42 (1983) 968-970. |
[49] | C. Eminian, F.-J. Haug, O. Cubero, X. Niquille, C. Ballif, Prog. Photovolt. Res. Appl. 19 (2011) 260-265. |
[50] | S. Ray, R. Banerjee, N. Basu, A.K. Batabyal, A.K. Barua, J. Appl. Phys. 54 (1983) 3497-3501. |
[51] | G. Haacke, J. Appl. Phys. 47 (1976) 4086-4089. |
[52] | S. Mandal, S. Dhar, G. Das, S. Mukhopadhyay, A.K. Barua, Sol. Energy 124 (2016) 278-286. |
[1] | Xiaofang Ye, Hongkun Cai, Jian Su, Jingtao Yang, Jian Ni, Juan Li, Jianjun Zhang. Preparation of hysteresis-free flexible perovskite solar cells via interfacial modification [J]. J. Mater. Sci. Technol., 2021, 61(0): 213-220. |
[2] | Tingting Wu, Guoqiang Deng, Chao Zhen. Metal oxide mesocrystals and mesoporous single crystals: synthesis, properties and applications in solar energy conversion [J]. J. Mater. Sci. Technol., 2021, 73(0): 9-22. |
[3] | Noh Young Wook, Jin In Su, Park Sang Hyun, Jung Jae Woong. Room-temperature synthesis of ZrSnO4 nanoparticles for electron transport layer in efficient planar hetrojunction perovskite solar cells [J]. J. Mater. Sci. Technol., 2020, 42(0): 38-45. |
[4] | InSu Jin, Minwoo Park, Jae Woong Jung. Reduced interface energy loss in non-fullerene organic solar cells using room temperature-synthesized SnO2 quantum dots [J]. J. Mater. Sci. Technol., 2020, 52(0): 12-19. |
[5] | Liquan Yao, Limei Lin, Hui Liu, Fengying Wu, Jianmin Li, Shuiyuan Chen, Zhigao Huang, Guilin Chen. Front and Back contact engineering for high-efficient and low-cost hydrothermal derived Sb2(S, Se)3 solar cells by using FTO/SnO2 and carbon [J]. J. Mater. Sci. Technol., 2020, 58(0): 130-137. |
[6] | Kyungeun Jung, Du Hyeon Kim, Jaemin Kim, Sunglim Ko, Jae Won Choi, Ki Chul Kim, Sang-Geul Lee, Man-Jong Lee. Influence of a UV-ozone treatment on amorphous SnO2 electron selective layers for highly efficient planar MAPbI3 perovskite solar cells [J]. J. Mater. Sci. Technol., 2020, 59(0): 195-202. |
[7] | Kunsik An, Jaehoon Kim, Mohammad Afsar Uddin, Seunghyun Rhee, Hyeok Kim, Kyung-Tae Kang, Han Young Woo, Changhee Lee. Germinant ZnO nanorods as a charge-selective layer in organic solar cells [J]. J. Mater. Sci. Technol., 2020, 55(0): 89-94. |
[8] | Johwa Yang, Hyunjin Jo, Soo-Won Choi, Dong-Won Kang, Jung-Dae Kwon. Adoption of wide-bandgap microcrystalline silicon oxide and dual buffers for semitransparent solar cells in building-integrated photovoltaic window system [J]. J. Mater. Sci. Technol., 2019, 35(8): 1563-1569. |
[9] | Qian-Qian Chu, Bin Ding, Jun Peng, Heping Shen, Xiaolei Li, Yan Liu, Cheng-Xin Li, Chang-Jiu Li, Guan-Jun Yang, Thomas P. White, Kylie R. Catchpole. Highly stable carbon-based perovskite solar cell with a record efficiency of over 18% via hole transport engineering [J]. J. Mater. Sci. Technol., 2019, 35(6): 987-993. |
[10] | Mingyue Li, Na Yuan, Yiwen Tang, Ling Pei, Yongdan Zhu, Jiaxian Liu, Lihua Bai, Meiya Li. Performance optimization of dye-sensitized solar cells by gradient-ascent architecture of SiO2@Au@TiO2 microspheres embedded with Au nanoparticles [J]. J. Mater. Sci. Technol., 2019, 35(4): 604-609. |
[11] | Mengyan Zhang, Tao Ning, Jie Chen, Lijie Sun, Lihua Zhou. Improvement on the interface properties of p-GaAs/n-InP heterojunction for wafer bonded four-junction solar cells [J]. J. Mater. Sci. Technol., 2019, 35(3): 330-333. |
[12] | Anil K.Battu, Nanthakishore Makeswaran, C.V. Raman. Fabrication, characterization and optimization of high conductivity and high quality nanocrystalline molybdenum thin films [J]. J. Mater. Sci. Technol., 2019, 35(11): 2734-2741. |
[13] | Mustafa Haider, Chao Zhen, Tingting Wu, Gang Liu, Hui-Ming Cheng. Boosting efficiency and stability of perovskite solar cells with nickel phthalocyanine as a low-cost hole transporting layer material [J]. J. Mater. Sci. Technol., 2018, 34(9): 1474-1480. |
[14] | Yan Li, Bin Ding, Guan-Jun Yang, Chang-Jiu Li, Cheng-Xin LiState. Achieving the high phase purity of CH3NH3PbI3 film by two-step solution processable crystal engineering [J]. J. Mater. Sci. Technol., 2018, 34(8): 1405-1411. |
[15] | Lei Yu, Sun Jianxia, Yuan Jianyu, Gu Jinan, Ding Guanqun, Ma Wanli. Controlling molecular weight of naphthalenediimide-based polymer acceptor P(NDI2OD-T2) for high performance all-polymer solar cells [J]. J. Mater. Sci. Technol., 2017, 33(5): 411-417. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||