J. Mater. Sci. Technol. ›› 2020, Vol. 48: 18-22.DOI: 10.1016/j.jmst.2019.12.022
• Research Article • Previous Articles Next Articles
Z.Y. Zhanga,b, L.X. Suna,c,*(), N.R. Taoa
Received:
2019-10-10
Accepted:
2019-12-12
Published:
2020-07-01
Online:
2020-07-13
Contact:
L.X. Sun
Z.Y. Zhang, L.X. Sun, N.R. Tao. Nanostructures and nanoprecipitates induce high strength and high electrical conductivity in a CuCrZr alloy[J]. J. Mater. Sci. Technol., 2020, 48: 18-22.
Fig. 1. Typical cross-sectional bright-field TEM images of solid solution treated DPD samples (SST-DPD): (a) nanotwins (NTs); (b) nanograins (NGs); (c) dislocation structures (DSs).
Fig. 3. (a) High magnification TEM image of SST-DPD samples after aging at 400 °C for 3 h (aged DPD). Insets are SAED patterns of the areas marked with circles; (b) EDS element mapping of Cr taken from the square region in (a). Coarsened precipitates have been pointed out by white arrows; (c, d) atomic resolution HAADF-STEM image and EDS element mapping of Cr on the twin boundary, respectively.
Fig. 5. Tensile engineering stress-strain curves of the solid solution treated coarse grained samples (SST-CG), pre-annealed DPD samples (Annl-DPD), solid solution treated samples after DPD (SST-DPD) and aging at 400 °C for 3 h (aged DPD), respectively.
Fig. 6. Combinations of the electrical conductivity and tensile strength of SST-DPD and aged DPD CuCrZr alloy in comparison with that of the reported CuCr(Zr/Ag) alloys.
[1] | L. Peng, H. Xie, G. Huang, G. Xu, X. Yin, X. Feng, X. Mi, Z. Yang, J. Alloys. Compd. 708 (2017) 1096-1102. |
[2] | A.P. Zhilyaev, I. Shakhova, A. Morozova, A. Belyakov, R. Kaibyshev, Mater. Sci. Eng. A 654 ( 2016) 131-142. |
[3] | A. Chbihi, X. Sauvage, D. Blavette, Acta Mater. 60 (2012) 4575-4585. |
[4] | A. Matthiessen, C. Vogt, Phil. Trans. Royal Soc. Lond. A 154 ( 1864) 167-200. |
[5] | S.V. Dobatkin, N.R. Bochvar, D.V. Shangina, Adv. Eng. Mater. 17 (2015) 1862-1868. |
[6] | G. Purcek, H. Yanar, M. Demirtas, Y. Alemdag, D.V. Shangina, S.V. Dobatkin, Mater. Sci. Eng. A 649 ( 2016) 114-122. |
[7] | N. Liang, J. Liu, S. Lin, Y. Wang, J.T. Wang, Y. Zhao, Y. Zhu, J. Alloys. Compd. 735 (2018) 1389-1394. |
[8] |
A. Vinogradov, V. Patlan, Y. Suzuki, K. Kitagawa, V.I. Kopylov, Acta Mater. 50 (2002) 1639-1651.
DOI URL |
[9] | L.X. Sun, N.R. Tao, K. Lu, Scr. Mater. 99 (2015) 73-76. |
[10] | F.K. Yan, G.Z. Liu, N.R. Tao, K. Lu, Acta Mater. 60 (2012) 1059-1071. |
[11] | G.Z. Liu, N.R. Tao, K. Lu, Mater. Sci. Technol. 26 (2010) 289-293. |
[12] | K. Lu, Nat. Rev. Mater. 1 (2016) 1-13. |
[13] | L. Lu, X. Chen, X. Huang, K. Lu, Science 323 ( 2009) 607-610. |
[14] |
L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, K. Lu, Science 304 ( 2004) 422-426.
URL PMID |
[15] | B.B. Zhang, N.R. Tao, K. Lu, Scr. Mater. 129 ( 2017) 39-43. |
[16] | Y. Zhang, Y.S. Li, N.R. Tao, K. Lu, Appl. Phys. Lett. 91 ( 2017), 211901. |
[17] | D.J. Chakrabarti, D.E. Laughlin, Bull. Alloy Phase Diag. 5 (1984) 59-68. |
[18] | W. Zhao, N. Tao, J. Guo, Q. Lu, K. Lu, Scr. Mater. 53 (2005) 745-749. |
[19] | N.R. Tao, K. Lu, Scr. Mater. 60 (2009) 1039-1043. |
[20] | N.R. Tao, K. Lu, J. Mater, Sci. Technol. 23 (2007) 771-774. |
[21] | Y.S. Li, N.R. Tao, K. Lu, Acta Mater. 56 (2008) 230-241. |
[22] | N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, K. Lu, Acta Mater. 50 (2002) 4603-4616. |
[23] | K. Kapoor, D. Lahiri, I.S. Batra, S.V.R. Rao, T. Sanyal, Mater. Charact. 54 (2005) 131-140. |
[24] | Y. Zhang, N.R. Tao, K. Lu, Scr. Mater. 60 (2009) 211-213. |
[25] |
T. Hu, K. Ma, T.D. Topping, J.M. Schoenung, E.J. Lavernia, Acta Mater. 61 (2013) 2163-2178.
DOI URL |
[26] | W. Chrominski, M. Lewandowska, Acta Mater. 103 (2016) 547-557. |
[27] | C.S. Smith, Trans. AIME 175 ( 1948) 15-51. |
[28] | J. Liu, X.H. Wang, T.T. Guo, J.T. Zou, X.H. Yang, Int. J. Min. Met. Mater. 22 (2015) 1199-1204. |
[29] | Q. Liu, X. Zhang, Y. Ge, J. Wang, J.Z. Cui, Metall. Mater. Trans. A 37 ( 2006) 3233-3238. |
[30] | H. Fu, S. Xu, W. Li, J. Xie, H. Zhao, Z. Pan, Mater. Sci. Eng. A 700 ( 2017) 107-115. |
[31] | S. Zhang, R. Li, H. Kang, Z. Chen, W. Wang, C. Zou, T. Li, T. Wang, Mater. Sci. Eng. A 680 ( 2017) 108-114. |
[1] | Leilei Chen, Jun Xu, Yi Wang, Rongqin Huang. Ultra-small MoS2 nanodots-incorporated mesoporous silica nanospheres for pH-sensitive drug delivery and CT imaging [J]. J. Mater. Sci. Technol., 2021, 63(0): 91-96. |
[2] | Jingwei Xu, Xiaju Cheng, Fuxian Chen, Weijie Li, Xiaohui Xiao, Puxiang Lai, Guopeng Xu, Li Xu, Yue Pan. Fabrication of multifunctional polydopamine-coated gold nanobones for PA/CT imaging and enhanced synergistic chemo-photothermal therapy [J]. J. Mater. Sci. Technol., 2021, 63(0): 97-105. |
[3] | Rajendra Kurapati, Vincent Maurice, Antoine Seyeux, Lorena H. Klein, Dimitri Mercier, Grégory Chauveau, Catherine Grèzes-Besset, Loïc Berthod, Philippe Marcus. Advanced protection against environmental degradation of silver mirror stacks for space application [J]. J. Mater. Sci. Technol., 2021, 64(0): 1-9. |
[4] | Kunlei Hou, Min Wang, Meiqiong Ou, Haoze Li, Xianchao Hao, Yingche Ma, Kui Liu. Effects of microstructure evolution on the deformation mechanisms and tensile properties of a new Ni-base superalloy during aging at 800 °C [J]. J. Mater. Sci. Technol., 2021, 68(0): 40-52. |
[5] | Xian-Zong Wang, Hong-Qiang Fan, Triratna Muneshwar, Ken Cadien, Jing-Li Luo. Balancing the corrosion resistance and through-plane electrical conductivity of Cr coating via oxygen plasma treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 75-84. |
[6] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Xiangdong Zha, Yingche Ma, Kui Liu. Microstructure evolution and stress rupture properties of K4750 alloys with various B contents during long-term aging [J]. J. Mater. Sci. Technol., 2021, 73(0): 108-115. |
[7] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
[8] | Lin Gao, Kai Li, Song Ni, Yong Du, Min Song. The growth mechanisms of θ′ precipitate phase in an Al-Cu alloy during aging treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 25-32. |
[9] | Xiangfu Liu, Rongwen Wang, Jinming Ma, Jibin Zhang, Pengfei Jiang, Yao Wang, Guoli Tu. Durable metal-enhanced fluorescence flexible platform by in-situ growth of micropatterned Ag nanospheres [J]. J. Mater. Sci. Technol., 2021, 69(0): 89-95. |
[10] | Yang Wang, Shun Zhang, Ruizhi Wu, Nodir Turakhodjaev, Legan Hou, Jinghuai Zhang, Sergey Betsofen. Coarsening kinetics and strengthening mechanisms of core-shell nanoscale precipitates in Al-Li-Yb-Er-Sc-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 197-203. |
[11] | Ye Yuan, Zhong Ji, Genghua Yan, Zhuowei Li, Jinliang Li, Min Kuang, Bangqi Jiang, Longlong Zeng, Likun Pan, Wenjie Mai. TiO2 electron transport bilayer for all-inorganic perovskite photodetectors with remarkably improved UV stability toward imaging applications [J]. J. Mater. Sci. Technol., 2021, 75(0): 39-47. |
[12] | Pan Liu, Lulu Hu, Qinhao Zhang, Cuiping Yang, Zuosi Yu, Jianqing Zhang, Jiming Hu, Fahe Cao. Effect of aging treatment on microstructure and corrosion behavior of Al-Zn-Mg aluminum alloy in aqueous solutions with different aggressive ions [J]. J. Mater. Sci. Technol., 2021, 64(0): 85-98. |
[13] | Xiao-Tao Luo, Yi Ge, Yingchun Xie, Yingkang Wei, Renzhong Huang, Ninshu Ma, Chidambaram Seshadri Ramachandran, Chang-Jiu Li. Dynamic evolution of oxide scale on the surfaces of feed stock particles from cracking and segmenting to peel-off while cold spraying copper powder having a high oxygen content [J]. J. Mater. Sci. Technol., 2021, 67(0): 105-115. |
[14] | Yanke Liu, Yulong Cai, Chenggang Tian, Guoliang Zhang, Guoming Han, Shihua Fu, Chuanyong Cui, Qingchuan Zhang. Experimental investigation of a Portevin-Le Chatelier band in Ni‒Co-based superalloys in relation to γʹ precipitates at 500 ℃ [J]. J. Mater. Sci. Technol., 2020, 49(0): 35-41. |
[15] | Xiaoqiang Li, Chunlong Cheng, Qichi Le, Lei Bao, Peipeng Jin, Ping Wang, Liang Ren, Hang Wang, Xiong Zhou, Chenglu Hu. Investigation of Portevin-Le Chatelier effect in rolled α-phase Mg-Li alloy during tensile and compressive deformation [J]. J. Mater. Sci. Technol., 2020, 52(0): 152-161. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||