J. Mater. Sci. Technol. ›› 2020, Vol. 38: 28-38.DOI: 10.1016/j.jmst.2019.05.072
• Research Article • Previous Articles Next Articles
Guang-Jian Yuana, Xian-Cheng Zhanga*(), Bo Chenb, Shan-Tung Tua*(
), Cheng-Cheng Zhangc
Received:
2019-03-07
Revised:
2019-05-13
Accepted:
2019-05-31
Published:
2020-02-01
Online:
2020-02-10
Contact:
Zhang Xian-Cheng,Tu Shan-Tung
Guang-Jian Yuan, Xian-Cheng Zhang, Bo Chen, Shan-Tung Tu, Cheng-Cheng Zhang. Low-cycle fatigue life prediction of a polycrystalline nickel-base superalloy using crystal plasticity modelling approach[J]. J. Mater. Sci. Technol., 2020, 38: 28-38.
C | Al | Si | Ti | Cr | Fe | Nb | Mb | Ni |
---|---|---|---|---|---|---|---|---|
0.82 | 0.44 | 0.18 | 1.16 | 19.55 | 18.93 | 5.19 | 2.74 | Balance |
Table 1 Chemical composition of GH4169 superalloys (wt%).
C | Al | Si | Ti | Cr | Fe | Nb | Mb | Ni |
---|---|---|---|---|---|---|---|---|
0.82 | 0.44 | 0.18 | 1.16 | 19.55 | 18.93 | 5.19 | 2.74 | Balance |
C11 (GPa) | C12 (GPa) | C44 (GPa) | n | $\dot{γ}0$ | $h_0$(MPa) | $g_∞$(MPa) | $τ_0$(MPa) | C(MPa) | D |
---|---|---|---|---|---|---|---|---|---|
266 | 114 | 76 | 100 | 0.001 | 200 | 650 | 315 | 39500 | 475 |
Table 2 Constitutive parameters of GH4169 superalloys.
C11 (GPa) | C12 (GPa) | C44 (GPa) | n | $\dot{γ}0$ | $h_0$(MPa) | $g_∞$(MPa) | $τ_0$(MPa) | C(MPa) | D |
---|---|---|---|---|---|---|---|---|---|
266 | 114 | 76 | 100 | 0.001 | 200 | 650 | 315 | 39500 | 475 |
Fig. 5. Model predicted plastic slip of GH4169 superalloy during the monotonic uniaxial tensile loading to enginering strains of (a) 3.5%, (b) 7% and (c) 13%.
Fig. 6. CPFEM model predicted cyclic stress?strain responses of the 2nd fatigue cycle that are compared with the LCF experimntal data obtained at a range of total strain amplitudes.
Fig. 7. Comparison of hysterisis loops between model predictions and experimental data for different fatigue loading cycles: (a) 1 st cycle, Δεt = 2.4%, (b) 3rd cycle, Δεt = 2.4%, (c) 10th cycle, Δεt = 2.4%, (d) 1 st cycle, Δεt = 1.6%, (e) 3rd cycle, Δεt = 1.6%, (f) 10th cycle, Δεt = 1.6%.
Fig. 8. Model predicted fatigue damage at the maximum tensile strain of 1.0% at the end of 10th fatigue cycle for the specimen tested with a total strain amplitude of 2.0%: (a) accumulated plastic slip, (b) accumulated energy dissipation. Note: Point A in each figure indicates the area ued for calulating critical fatigue damage indacator parameters.
Fig. 9. Optical micrograph of a LCF fatigue tested specimen with a total strain amplitude of 2.0%. Note: The microstructure examination was made on a specimen that had been extracted from the location near to the fatigue fracture surface.
Fig. 12. Model predicted distrbution of the maximum principal stresses and strains at a LCF fatigue loaded specimen: (a) and (b) σ11 and ε11 at the loaded state to the maximum strain of 1.0%, (c) and (d) σ11 and ε11 at the unloaded state after the specimen was loaded to the maximum strain of 1.0%.
Fig. 13. A comparison of model predictions and experimental tensile and LCF fatigue stress-strain curves for different sets of grain orientations: (a) tensile loading, (b) LCF fatigue loading with the total strain amplitude of 2.0%.
Fig. 14. Stress distribution with different sets of orientations at maximum strain load condition of strain amplitude 2.0%: (a) case 1, (b) case 2, (c) case 3.
|
[1] | Chaolin Tan, Youxiang Chew, Guijun Bi, Di Wang, Wenyou Ma, Yongqiang Yang, Kesong Zhou. Additive manufacturing of steel-copper functionally graded material with ultrahigh bonding strength [J]. J. Mater. Sci. Technol., 2021, 72(0): 217-222. |
[2] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
[3] | R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: I. Model building and fatigue strength prediction [J]. J. Mater. Sci. Technol., 2021, 70(0): 233-249. |
[4] | R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: II. Parameter analysis and fatigue strength improvement [J]. J. Mater. Sci. Technol., 2021, 70(0): 250-267. |
[5] | Dan Liu, Daoxin Liu, Mario Guagliano, Xingchen Xu, Kaifa Fan, Sara Bagherifard. Contribution of ultrasonic surface rolling process to the fatigue properties of TB8 alloy with body-centered cubic structure [J]. J. Mater. Sci. Technol., 2021, 61(0): 63-74. |
[6] | Haiyang Yu, Zhenzhu Wang, Jiangfeng Ni, Liang Li. Freestanding nanosheets of 1T-2H hybrid MoS2 as electrodes for efficient sodium storage [J]. J. Mater. Sci. Technol., 2021, 67(0): 237-242. |
[7] | Patryk Jedrasiak, Hugh Shercliff. Finite element analysis of small-scale hot compression testing [J]. J. Mater. Sci. Technol., 2021, 76(0): 174-188. |
[8] | Hui Wang, Cheng Lu, Kiet Tieu, Yu Liu. A crystal plasticity FE study of macro- and micro-subdivision in aluminium single crystals {001}<110> multi-pass rolled to a high reduction [J]. J. Mater. Sci. Technol., 2021, 76(0): 231-246. |
[9] | Rui Liu, Li Liu, Wenliang Tian, Yu Cui, Fuhui Wang. Finite element analysis of effect of interfacial bubbles on performance of epoxy coatings under alternating hydrostatic pressure [J]. J. Mater. Sci. Technol., 2021, 64(0): 233-240. |
[10] | H.F. Li, Z.Z. Shi, L.N. Wang. Opportunities and challenges of biodegradable Zn-based alloys [J]. J. Mater. Sci. Technol., 2020, 46(0): 136-138. |
[11] | Jiahao Cheng, Xiaohua Hu, Xin Sun, Anupam Vivek, Glenn Daehn, David Cullen. Multi-scale characterization and simulation of impact welding between immiscible Mg/steel alloys [J]. J. Mater. Sci. Technol., 2020, 59(0): 149-163. |
[12] | Chenfan Yu, Peng Zhang, Zhefeng Zhang, Wei Liu. Microstructure and fatigue behavior of laser-powder bed fusion austenitic stainless steel [J]. J. Mater. Sci. Technol., 2020, 46(0): 191-200. |
[13] | Yinling Zhang, Aihan Feng, Shoujiang Qu, Jun Shen, Daolun Chen. Microstructure and low cycle fatigue of a Ti2AlNb-based lightweight alloy [J]. J. Mater. Sci. Technol., 2020, 44(0): 140-147. |
[14] | Zhihong Wu, Hongchao Kou, Nana Chen, Mengqi Zhang, Ke Hua, Jiangkun Fan, Bin Tang, Jinshan Li. Duality of the fatigue behavior and failure mechanism in notched specimens of Ti-7Mo-3Nb-3Cr-3Al alloy [J]. J. Mater. Sci. Technol., 2020, 50(0): 204-214. |
[15] | S.G. Wang, M. Sun, S.Y. Liu, X. Liu, Y.H. Xu, C.B. Gong, K. Long, Z.D. Zhang. Synchronous optimization of strengths, ductility and corrosion resistances of bulk nanocrystalline 304 stainless steel [J]. J. Mater. Sci. Technol., 2020, 37(0): 161-172. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||