Please wait a minute...
J Mater Sci Technol  2009, Vol. 25 Issue (03): 289-313    DOI:
Reviews Current Issue | Archive | Adv Search |
Challenges in Atomic-Scale Characterization of High-k Dielectrics and Metal Gate Electrodes for Advanced CMOS Gate Stacks
Xinhua Zhu, Jian-min Zhu, Aidong Li, Zhiguo Liu, Naiben Ming
Download:  HTML  PDF(3923KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The decreasing feature sizes in complementary metal-oxide semiconductor (CMOS) transistor technology will require the replacement of SiO2 with gate dielectrics that have a high dielectric constant (high-k) because as the SiO2 gate thickness is reduced below 1.4 nm, electron tunnelling effects and high leakage currents occur in SiO2, which present serious obstacles to future device reliability. In recent years significant progress has been made on the screening and selection of high-k gate dielectrics, understanding their physical properties, and their integration into CMOS technology. Now the family of hafnium oxide-based materials has emerged as the leading candidate for high-k gate dielectrics due to their excellent physical properties. It is also realized that the high-k oxides must be implemented in conjunction with metal gate electrodes to get sufficient potential for CMOS continue scaling. In the advanced nanoscale Si-based CMOS devices, the composition and thickness of interfacial layers in the gate stacks determine the critical performance of devices. To build up a full atomic-scale understanding of high-k gate stacks, including their ultimate electrical properties, a thorough atomic-scale physical analysis of these ultrathin gate stacks are highly required. High-resolution microscopic and spectroscopic methods are central in facilitating high-k gate dielectrics to be integrated in CMOS devices and to continue scaling. In this review, we summarize the strengths and capabilities of several high-resolution electron, ion, and photon-based techniques currently used to characterize the high-k gate dielectrics at atomic scale. Particularly, we review the enormous progresses on characterizing interface behavior and structural evolution in the high-k gate dielectrics by high-resolution transmission electron microscopy (HRTEM), and the related techniques based on scanning transmission electron microscopy (STEM), including high-angle annular dark-field (HAADF) imaging (also known as Z-contrast imaging), electron energy-loss spectroscopy (EELS), and energy dispersive X-ray spectroscopy (EDS). This review is organized into five sections. In the first section, we briefly introduce the working principles of each technique and outline their key features. And then we critically review the advances on microstructural characterization of high-k gate dielectrics at atomic scale by electron microscopy, citing some recent results reported on high

Key words:  High-k gate dielectrics      Metal gate electrodes      CMOS gate stack      HRTEM      STEM     
Received:  02 February 2008     
Fund: 

Natural Science Foundation of Jiangsu Province (Project No. BK2007130),
National Natural Science Foundation of China (Grant Nos. 10874065, 60576023 and 60636010),
Ministry of Science and Technology of China (Grant No. 2009CB929503),
key projects from Ministry of Science and Technology of China (Grant Nos. 2009CB929503 and 2009ZX02101-4),
the project sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,
State Education Ministry, and National Found for Fostering Talents of Basic Science (NFFTBS) (Project No. J0630316).

Cite this article: 

Xinhua Zhu,Jian-min Zhu,Aidong Li,Zhiguo Liu,Naiben Ming. Challenges in Atomic-Scale Characterization of High-k Dielectrics and Metal Gate Electrodes for Advanced CMOS Gate Stacks. J Mater Sci Technol, 2009, 25(03): 289-313.

URL: 

https://www.jmst.org/EN/     OR     https://www.jmst.org/EN/Y2009/V25/I03/289

[1 ] D. Buchanan: IBM J. Res. Dev., 1999, 43, 245.
[2 ] M.L. Green, E.P. Gusev, R. Degraeve and E. Garfunkel: J. Appl. Phys., 2001, 90, 2057.
[3 ] G.D. Wilk, R.M. Wallace and J.M. Anthony: J. Appl. Phys., 2001, 89, 5243.
[4 ] E.P. Gusev: in Defects in SiO2 and Related Dielectrics: Science and Technology, ed. G. Pacchioni, Kluwer Academic Publishers, Dordrecht, Netherlands, 2000, 557.
[5 ] D.C. Gilmer, R. Hegde, R. Cotton, J. Smith, L. Dip, R. Garcia, V. Dhandapani, D. Triyoso, D. Roan, A. Franke, R. Rai, L. Prabhu, C. Hobbs, J.M. Grant, L. La, S.  Samavedam, B. Taylor, H. Tseng and P. Tobin: Microelectron. Eng., 2003, 69, 138.
[6 ] M.S. Akbar, S. Gopalan, H.J. Cho, K. Onishi, R. Choi, R. Nieh, C.S. Kang, Y.H. Kim, J. Han, S. Krishnan and J.C. Lee: Appl. Phys. Lett., 2003, 82, 1757.
[7 ] L. Miotti, K.P. Bastos, G.V. Soares, C. Driemeier, R.P. Pezzi, J. Morais, I.J.R. Baumvol, A.L.P. Rotondaro, M.R. Visokay, J.J. Chambers, M. Quevedo-Lopez and L. Colombo: Appl. Phys. Lett., 2004, 85, 4460.
[8 ] M.A. Quevedo-Lopez, S.A. Kirshnan, P.D. Kirsch, G. Pant, B.E. Gnade and R.M. Wallace: Appl. Phys. Lett., 2005, 87, 262902.
[9 ] E.P. Gusev, C. Cabral, M. Copel, C.D. Emic and M. Gribelyuk: Microelectron. Eng., 2003, 69, 145.
[10] A.I. Kingon, J.P. Maria and S.K. Strei®er: Nature, 2000, 496, 1032.
[11] G.D. Wilk, R.M. Wallace and J.M. Anthony: J. Appl. Phys., 2001, 89, 5243.
[12] R.K. Sharma, A. Kumar and J.M. Anthony: JOM, 2001, 53.
[13] M. Houssa and M.M. Heyns: in High-k Gate Dielectrics, ed. M.Houssa, Institute of Physics Publishing, Bristol, 2004, 3.
[14] J. Robertson: Rep. Prog. Phys., 2006, 69, 327.
[15] E.P. Gusev, V. Narayanan and M.M. Frank: IBM J. Res. Dev., 2006, 50, 387.
[16] B.H. Lee, J.W. Oh, H.H. Tseng, R. Jammy and H. Huff: Materialstoday, 2006, 9, 32.
[17] G. He and L.D. Zhang: J. Mater. Sci. Technol., 2007, 23, 433.
[18] A.C. Diebolda, D. Venablesb, Y. Chabalc, D. Mullerc, M. Weldonc and E. Garfunkeld: Mater. Sci. Semicond. Process., 1999, 2, 103.
[19] B.W. Busch, O. Pluchery, Y.J. Chabal, D.A. Muller, R.L. Opila, J.R. Kwo and E. Garfunkel: MRS Bulletin, 2002, 27, 206.
[20] E. Garfunkeld, T. Gustafsson, P. Lysaght, S. Stemmer and R. Wallace: FUTURE FAB Inter., 21, 2006, Section 8.
[21] P.M. Voyles, D.A. Muller and E.J. Kirkland: Micros. Microanal., 2004, 10, 291.
[22] K.V. Benthem, A.W. Lupini, M. Kim, H.S. Baik, S. Doh, J.H. Lee, M.P. Oxley, J.T. Luck and S.J. Pennycook: Appl. Phys. Lett., 2005, 87, 034104.
[23] H. Rose: Optik, 1990, 85, 19.
[24] P.E. Batson, N. Dellby and O.L. Krivanek: Nature, 2002, 418, 617.
[25] H. Fukuda, M. Yasuda, T. Iwabuchi and S. Ohno: Appl. Surf. Sci., 1992, 60/61, 359.
[26] K. Kukli, M. Ritala, M. Leskela , T. Sajavaara, J. Keinonen, D.C. Gilmer, R. Hedge, R. Rai and L. Prabhu: J. Mater. Sci. Mater. Electron., 2003, 14, 161.
[27] T. Gustafsson, H.C. Lu, B.W. Busch, W.H. Schulte and E. Garfunkel: Nucl. Instrum. Meth. B, 2001, 183, 146.
[28] Y.P. Kim, S.K. Choi, H.K. Kim and D.W. Moon: Appl. Phys. Lett., 1997, 71, 3504.
[29] G.B. Alers, D.J. Werder, Y. Chabal, H.C. Lu, E.P. Gusev, E. Garfunkel, T. Gustafsson and R.S. Urdahl: Appl. Phys. Lett., 1998, 73, 1517.
[30] R.A.B. Devine: Appl. Phys. Lett., 1996, 68, 1924.
[31] X.B. Lu, Z.G. Liu, G.H. Shi, H.Q. Ling, H.W. Zhou, X.P. Wang and B.Y. Nguyen: Appl. Phys. A, 2004, 78, 921.
[32] J.L. Autran, R. Devine, C. Chaneliere and B. Balland: IEEE Electron Device Lett., 1997, 18, 447.
[33] K.A. Son, A.Y. Mao, Y.M. Sun, B.Y. Kim, F. Liu, A. Kamath, J.M. White, D.L. Kwong, D.A. Roberts and R.N. Vritis: Appl. Phys. Lett., 1998, 72, 1187.
[34] G.B. Alers, R.M. Fleming, Y.H. Wong, B. Dennis, A. Pinczuk, G. Redinbo, R. Urdahl, E. Ong and Z. Hasan: Appl. Phys. Lett., 1998, 72, 1308.
[35] G.B. Alers, D.J. Werder, Y. Chabal, H.C. Lu, E.P. Gusev, E. Garfunkel, T. Gustafsson and R. Urdahl: Appl. Phys. Lett., 1998, 73, 1517.
[36] M.B. Lee, M. Kawasaki and H. Koinuma: Jpn. J. Appl. Phys., 1995, 34, 808.
[37] H.S. Kim, D.C. Gilmer and D.L. Polla: Appl. Phys. Lett., 1996, 69, 3860.
[38] S.A. Campbell, D.C. Gilmer, X.C. Wang, M.T. Hsieh, H.S. Kim, W. Gladfelter and J. Yan: IEEE Trans. Electron Devices , 1997, 44, 104.
[39] S.M. George, O. Sneh and J.D. Way: Appl. Surf. Sci., 1994, 82/83, 460.
[40] R.D. Shannon: J. Appl. Phys., 1993, 73, 348.
[41] R.H. French: J. Am. Ceram. Soc., 1990, 73, 477.
[42] G.D. Wilk and R.M. Wallace: Appl. Phys. Lett., 1999, 74, 2854.
[43] G.D. Wilk and R.M. Wallace: Appl. Phys. Lett., 2000, 76, 112.
[44] Y.H. Wu, M.Y. Yang, A. Chin, W.J. Chen and C.M. Kwei: IEEE Electron. Device Lett., 2000, 21, 341.
[45] H.J. Osten, J.P. Liu and H.J. Mussig: Appl. Phys. Lett., 2002, 80, 297.
[46] J. Kwo, M. Hong, A.R. Kortan, K.T. Queeney, Y.J. Cabal, J.P. Mannaerts, T. Boone, J.J. Krajewski,
A.M. Sergent and J.M. Rosamilia: Appl. Phys. Lett., 2000, 77, 130.
[47] G.D. Wilk, R.M. Wallace and J.M. Anthony: J. Appl. Phys., 2001, 89, 5243.
[48] J.PÄaivÄasaari, M. Putkonen and L. NiinistÄo: Thin Solid Films, 2005, 472, 275.
[49] J.A. Gupta, D. Landheer, J.P. McCaffrey and G.I. Sproule: Appl. Phys. Lett., 2001, 78, 1718.
[50] M. Copel, E. Cartier and F.M. Ross: Appl. Phys. Lett., 2001, 78, 1607.
[51] T. Heeg, M. Wagner, J. Schubert, C. Buchal, M. Boese, M. Luysberg, E. Cicerrella and J.L. Freeouf: Microelectron. Eng., 2005, 80, 150.
[52] M. Wagner, T. Heeg, J. Schubert, C. Zhao, O. Richard, M. Caymax, V.V. Afanas and S. Mantl: Solid-State Electronics, 2006, 50, 58.
[53] P. Myllymaki, M. Nieminen, J. Niinisto, M. Putkonen, K. Kuklibc and L. Niinisto: J. Mater. Chem., 2006, 16, 563.
[54] K. Eisenbeiser, J.M. Finder, Z. Yu, J. Ramdani, J.A. Curless, J.A. Hallmark, R. Droopad, W.J. Ooms, L. Salem, S. Bradshaw and C.D. Overgaard: Appl. Phys. Lett., 2000, 76, 1324.
[55] S.B. Samavedam, L.B. La, J. Smith, S. DakshinaMurthy, E. Luckowski, J. Schae®er, M. Zavala, R. Martin, V. Dhandapani, D. Triyoso, H.H. Tseng, P.J. Tobin, D.C. Gilmer, C. Hobbs, W.J. Taylor,
J.M. Grant, R.I. Hegde, J. Mogab, C. Thomas, P. Abramowitz, M. Moosa, J. Conner, J. Jiang, V. Arunachalarn, M. Sadd, B.Y. Nguyen and B. White: IEDM Tech. Digest, 2001, 433.
[56] W. Tsai, L.A. Ragnarsson, L. Pantisano, P.J. Chen, B. Onsia, T. Schram, E. Cartier, A. Kerber, E. Young, M. Caymax, S.D. Gendt and M. Heyns: IEDM Tech. Digest, 2003, 311.
[57] E. Cartier, F.R. McFeely, V. Narayanan, P. Jamison, B.P. Linder, M. Copel, V.K. Paruchuri, V.S. Basker, R. Haight, D. Lim, R. Carruthers, T. Shaw, M. Steen, J. Sleight, J. Rubino, H. Deligianni, S. Guha, R. Jammy, and G. Shahidi: Symp. VLSI Technol., 2005, 230.
[58] J.K. Schae®er, L.R.C. Fonseca, S.B. Samavedam, Y. Liang, P.J. Tobin and B.E. White: Appl. Phys. Lett., 2004, 85, 1826.
[59] Y.C. Cheng and E.A. Sullivan: J. Appl. Phys., 1973, 44, 923.
[60] S. Krupanidhi, N. Ma®eo, M. Sayer and K.E. Asse: J. Appl. Phys., 1983, 54, 6601.
[61] K. Sreevinas, M. Sayer, D.J. Baar and M. Nishioka: Appl. Phys. Lett., 1988, 52, 709.
[62] K. Saenger, R. Roy, K. Etzold and J. Cuomo: Mater. Res. Soc. Symp. Proc., 1991, 200, 115.
[63] R. Ramesh, A. Inam, W.K. Chan, F. Tillerot, B. Wilkens, C.C. Chang, T. Sands, J.M. Tarascon and V.G. Keramidas: Appl. Phys. Lett., 1991, 59, 3542.
[64] K.D. Budd, S.K. Dey and D.A. Payne: Br. Ceram. Soc. Proc., 1985, 36, 107.
[65] T. Kawahara, M. Yamamuka, T. Makita, J. Naka, A. Yuuki, N. Mikami and K. Ono: Jpn. J. Appl. Phys., 1994, 33, 5129.
[66] L.A. Wills, W.A. Feil, B.W. Wessels, L.M. Tonge and T.J. Marks: J. Cryst. Growth, 1991, 107, 712.
[67] M. de Keijser, G.J.M. Dormans, J.F.M. Gillessen, D.M. de Leeuw and H.W. Zandbergen: Appl. Phys. Lett., 1991, 58, 2636.
[68] M. de Keijser and G.J.M. Dormans: Mater. Res. Soc. Bull., 1996, 21, 37.
[69] A. Jones: Chem. Vap. Deposition, 1998, 4, 169.
[70] I.M. Watson: Chem. Vap. Deposition, 1997, 3, 9.
[71] A.C. Jones: J. Mater. Chem., 2002, 12, 2576.
[72] O. Sneh, R.B. Clark-Phelps, A.R. Londergan, J. Winkler and T.E. Seidel: Thin Solid Films, 2002, 402, 248.
[73] M. Leskela and M. Ritala: Thin Solid Films, 2002, 409, 138.
[74] R.L. Puurunen: J. Appl. Phys., 2005, 97, 121301.
[75] A.C. Jones, H.C. Aspinall, P.R. Chalker, R.J. Potter, K. Kukli, A. Rahtu, M. Ritalac and M. Leskela: J. Mater. Chem., 2004, 14, 3101.
[76] A.C. Jones, H.C. Aspinall, P.R. Chalker, R.J. Potter, T.D. Manning, Y.F. Loo, R.O. Kane, J.M. Gaskell and L.M. Smith: Chem. Vap. Deposition, 2006, 12, 83.
[77] M. Schumacher, P.K. Baumann and T. Seidel: Chem. Vap. Deposition, 2006, 12, 99.
[78] W. Tsai, R.J. Carter, H. Nohira, M. Caymax, T. Conard, V. Cosnier, S. DeGendt, M. Heyns, J. Petry, O. Richard, W. Vandervorst, E. Young, C. Zhao, J.
Maes, M. Tuominen, W.H. Schulte, E. Garfunkel and T. Gustafsson: Microelectron. Eng., 2003, 65, 259.
[79] D.R.G. Mitchell, A. Aidla and J. Aarik: Appl. Surf. Sci., 2006, 253, 606.
[80] J. Lu, J. Aarik, J. Undqvist, K. Kukli, A. Harsta and J.O. Carlsson: J. Cryst. Growth, 2005, 273, 510.
[81] A.J. Craven, M. MacKenzie, D.W. McComb and F.T. Docherty: Microelectron. Eng., 2005, 80, 90.
[82] M. MacKenzie, A.J. Craven, D.A. Hamilton and D.W. McComb: Appl. Phys. Lett., 2006, 88, 022108.
[83] K. Sekine, S. Inumiya, M. Sato, A. Kaneko, K. Eguchi and Y. Tsunashima: IEDM Tech. Digest, 2003, 102.
[84] Y.H. Lin, C.H. Chien, C.T. Lin, C.W. Chen, C.Y. Chang and T.F. Lei: IEDM Tech. Digest, 2004, 1080.
[85] M.A. Quevedo-Lopez, M.R. Visokay, J.J. Chambers, M.J. Bevan, A. LiFatou, L. Colombo, M.J. Kim, B.E. Gnade and R.M. Wallace: J. Appl. Phys., 2005, 97, 043508.
[86] T.M. Pan, C.L. Chen, W.W. Yeh and W.J. Lai: Electrochem. Solid-State Lett., 2007, 10, H101.
[87] M. Leskala and M. Ritala: J. Solid State Chem., 2003, 171, 170.
[88] T.M. Pan, J.D. Lee and W.W. Yeh: J. Appl. Phys., 2007, 101, 024110.
[89] S. Duenas, H. Castan, H. Garcia, A. Gomez, L. Bailon, K. Kukli, T. Hatanpaa, J. Lu, M. Ritala and M. Leskela: J. Electrochem. Soc., 2007, 154, G207.
[90] G.D. Wilk, R.M. Wallace and J.M. Anthony: J. Appl. Phys., 2001, 89, 5243.
[91] J.A. Gupta, D. Landheer, J.P. McCa®rey and G.I. Sproule: Appl. Phys. Lett., 2001, 78, 1718.
[92] M. Copel, E. Cartier and F.M. Ross: Appl. Phys. Lett., 2001, 78, 1607.
[93] J. Kwo, M. Hong, A.R. Kortan, K.T. Queeney, Y.J. Cabal, J.P. Mannaerts, T. Boone, J.J. Krajewski, A.M. Sergent and J.M. Rosamilia: Appl. Phys. Lett., 2000, 77, 130.
[94] J.A. Gupta, D. Landheer, J.P. McCa®rey and G.F.I. Sproule: Appl. Phys. Lett., 2001, 78, 1718.
[95] M.D. Kannan, S.K. Narayandass, C. Balasubramanian and D. Mangalaraj: Phys. Stat. Sol. (a), 1991, 128, 427.
[96] A.C. Jones, H.C. Aspinall, P.R. Chalker, R.J. Potter, K. Kukli, A. Rahtu, M. Ritala and M. Leskela: Mater. Sci. Eng. B, 2005, 118, 97.
[97] J. PÄaivÄasaari, J. NiinistÄo, P. MyllymÄaki, C.L. Dezelah, C.H. Winter, M. Putkonen, M. Nieminen and L. NiinistÄo: Top. Appl. Phys., 2006, 106, 15.
[98] M. LeskelÄa, K. Kukli and M. Ritala: J. All. Compd., 2006, 418, 27
[99] J. Kwo: J. Appl. Phys., 2001, 89, 3920.
[100] B.W. Busch, J. Kwo, M. Hong, J.P. Mannaerts, B.J. Sapjeta, W.H. Schulte, E. Garfunkel and T. Gustafsson: Appl. Phys. Lett., 2001, 79, 2447.
[101] S. Stemmer, J.P. Maria and A.I. Kingon: Appl. Phys. Lett., 2001, 79, 102.
[102] H.J. Osten, J.P. Liu, P. Gaworzewski, E. Bugiel and P. Zaumseil: IEDM Tech. Digest., 2000, 653.
[103] G. Adachi and N. Imanaka: Chem. Rev., 1998, 98, 1479.
[104] L.R. Morss: Chem. Rev., 1976, 7, 827.
[105] H.J. Osten, J.P. Liu and H.J. Mussig: Appl. Phys. Lett., 2002, 80, 297.
[106] R.L. Nigro, G. Malandrino, R.G. Toro and I.L. Fragala: Chem. Vap. Deposition, 2006, 12, 109.
[107] T. Heeg, M. Wagner, J. Schubert, C. Buchal, M. Boese, M. Luysberg, E. Cicerrella and J.L. Freeouf: Microelectron. Eng., 2005, 80, 150.
[108] C. Zhao, T. Witters, B. Brijs, H. Bender, O. Richard, M. Caymax, T. Heeg, J. Schubert, V.V. Afanas'ev, A. Stesmans and D.G. Schlom: Appl. Phys. Lett., 2005, 86, 132903.
[109] H.J. Osten, M. Czernohorsky, R. Dargis, A. Laha, D. KÄUhne, E. Bugiel and A. Fissel: Microelectron. Eng., 2007, 84, 2222.
[110] H.J. Osten, D. KÄuhne, A. Laha, M. Czernohorsky, E. Bugiel and A. Fissel: J. Vac. Sci. Technol. B, 2007, 25, 1039.
[111] A. Laha, A. Fissel, E. Bugiel and H.J. Osten: Thin Solid Films, 2005, 515, 6512.
[112] D.G. Schlom and J.H. Haeni: MRS Bull., 2002, 27, 198.
[113] C. Marchiori, M. Sousa, A. Guiller, H. Siegwart, J.P. Locquet, J. Fompeyrine, G.J. Norga and J.W. Seo: Appl. Phys. Lett., 2006, 88, 72913.
[114] G.J. Norga, C. Marchiori, C. Rossel, A. Guiller, J.P. Locquet, H. Siegwart, D. Caimi and J. Fompeyrine, J.W. Seo and C. Dieker: J. Appl. Phys., 2006, 99, 84102.
[115] C.J. Forst, C.R. Ashman, K. Schwarz and P.E. Bloch: Nature, 2004, 427, 53.
[116] S.A. Chambers, Y. Liang, Z. Yu, R. Droopad, J. Ramdani and K. Eisenbeiser: Appl. Phys. Lett., 2000, 77, 1662.
[117] R. Schwab, R. Sporl, P. Severloh, R. Heidinger and J. Halbritter: Inst. Phys. Conf. Ser., 1997, 158, 61.
[118] S.G. Lim, S. Kriventsov, T.N. Jackson, J.H. Haeni, D.G. Schlom, A.M. Balbashov, R. Uecker, P. Reiche, J.L. Freeouf and G. Lucovsky: J. Appl. Phys., 2003, 91, 4500.
[119] L.F. Edge, D.G. Schlom, S.A. Chambers, E. Cicerrella, J.L. Freeouf, B. Hollander and J. Chubert: Appl. Phys. Lett., 2004, 84, 726.
[120] A.D. Li, Q.Y. Shao, H.Q. Ling, J.B. Cheng, D. Wu, Z.G. Liu and N.B. Ming: Appl. Phys. Lett., 2003, 17, 3540.
[121] P. Ellissier, R. Baptist and G. Chauvet: Surf. Sci., 1989, 210, 99.
[122] D.O. Klenov, D.G. Schlom, H. Li and S. Stemmer: Jpn. J. Appl. Phys., 2005, 44, L617.
[123] M.V. Fischetti, D.A. Neumayer and E.A. Cartier: J. Appl. Phys., 2001, 90, 4587.
[124] S. Datta, G. Dewey, M. Doczy, B.S. Doyle, B. Jin, J. Kavalieros, R. Kotlyar, M. Metz, N. Zelick and R. Chau: IEDM Tech. Digest, 2003, 653.
[125] E.P. Gusev, D.A. Buchanan, E. Cartier, A. Kumar, D. DiMaria, S. Guha, A. Callegari, S. Zafar, P.C. Jamison, D. Neumayer, M. Copel, M.A. Gribelyuk, H. Okorn-Schmidt, C.D. Emic, P. Kozlowski, K. Chan, N. Bojarczuk, L. Ragnarsson, P. Ronshein, K. Rim, R.J. Fleming, A. Mocuta and A. Ajmera: IEDM Tech. Di-gest, 2001, 451.
[126] R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros and M. Metz: IEEE Elect. Dev. Lett., 2004, 25, 408.
[127] S.P. Murarka: J. Vac. Sci. Technol., 1980, 17, 775.
[128] S.P. Murarka, D.B. Fraser, A. Sinha and H.J. Levinstein: IEEE Trans. Electron Devices, 1980, 27, 1409.
[129] S. Inoue, N. Toyokura, T. Nakamura and H. Ishikawa: J. Electrochem. Soc., 1981, 128, 2402.
[130] B. Tavel, T. Skotnicki, G. Pares, N. Carriere, M. Rivoire, F. Leverd, C. Julien, J. Torres and R. Pantel: IEDM Tech. Digest, 2001, 825.
[131] Z. Krivokapic, W.P. Maszara, K. Achutan, P. King, J. Gray, M. Sidorow, E. Zhao, J. Zhang, J. Chan, A. Marathe and M.R. Lin: IEDM Tech. Digest, 2002, 271.
[132] J. Kedzierski, D. Boyd, P. Ronsheim, S. Zafar, J. New-bury, J.O.C. Cabral, M. Ieong and W. Haensch: IEDM Tech. Digest, 2003, 315.
[133] K. Takahashi, K. Manabe, T. Ikarashi, N. Ikarashi, T. Hase, T. Yoshihara, H. Watanabe, T. Tatsumi and Y. Mochizuki: IEDM Tech. Digest, 2004, 91.
[134] C.Y. Kang, P. Lysaght, R. Choi, B.H. Lee, S.J. Rhee, C.H. Choi, M.S. Akbar and J.C. Lee: Appl. Phys. Lett., 2005, 86, 222906.
[135] J.K. Schae®er, L.R.C. Fonseca, S.B. Samavedam, Y. Liang, P.J. Tobin and B.E. White: Appl. Phys. Lett., 2004, 85, 1826.
[136] J.K. Schae®er, S.B. Samavedam, D.C. Gilmer, V. Dhandapani, P.J. Tobin, J. Mogab, B.Y. Nguyen, B.E. White, S.D.Murthy, R.S. Rai, Z.X. Jiang, R. Martin,
M.V. Raymond, M. Zavala, L.B. La, J.A. Smith, R. Garcia, D. Roan, M. Kottke and R.B. Gregory: J. Vac. Sci. Technol. B, 2003, 21, 11.
[137] P.S. Lysaght, J.J. Peterson, B. Foran, C.D. Young, G. Bersuker and H.R. Hu®: Mater. Sci. Semicond. Process., 2004, 7, 259.
[138] M.P. Agustin, L.R.C. Fonseca, J.C. Hooker and S. Stemmer: Appl. Phys. Lett., 2005, 87, 121909.
[139] M.P. Agustin, H. Alshareef, M.A.Q. Lopez and S. Stemmer: Appl. Phys. Lett., 2006, 89, 041906.
[140] J.H. Harris, R.A. Youngman and R.G. Teller: J. Mater. Res., 1990, 5, 1763.
[141] R.A. Youngman and J.H. Harris: J. Am. Ceram. Soc., 1990, 73, 3238.
[142] S. Stemmer: J. Vac. Sci. Technol. B, 2004, 22, 791.
[143] C.M. Perkins, B.B. Triplett, P.C. McIntyre, K.C. Saraswat and E. Shero: Appl. Phys. Lett., 2002, 81, 1417.
[144] H.N. Alshareef, H.F. Luan, K. Choi, H.R. Harris, H.C. Wen, M.A. Quevedo-Lopez, P. Majhi and B.H. Lee: Appl. Phys. Lett., 2006, 88, 112114.
[145] F.T. Docherty, M. MacKenzie, D. Pennicard1, A.J. Craven and D.W. McComb: J. Phys.: Conference Ser., 2006, 26, 231.

[1] Yifei Xu, Lars P.H. Jeurgens, Peter Schützendübe, Shengli Zhu, Yuan Huang, Yongchang Liu, Zumin Wang. Effect of atomic structure on preferential oxidation of alloys: amorphous versus crystalline Cu-Zr[J]. 材料科学与技术, 2020, 40(0): 128-134.
[2] Majid Jafari, Chan-Woo Bang, Jong-Chan Han, Kyeong-Min Kim, Seon-Hyeong Na, Chan-Gyung Park, Byeong-Joo Lee. Evolution of microstructure and tensile properties of cold-drawn hyper-eutectoid steel wires during post-deformation annealing[J]. 材料科学与技术, 2020, 41(0): 1-11.
[3] Yinli Peng, Nan Wang. Effect of phase-separated patterns on the formation of core-shell structure[J]. 材料科学与技术, 2020, 38(0): 64-72.
[4] Zhu Hui, Guo Dagang, Zang Hang, A.H. Hanaor Dorian, Yu Sen, Schmidt Franziska, Xu Kewei. Enhancement of hydroxyapatite dissolution through structure modification by Krypton ion irradiation[J]. 材料科学与技术, 2020, 38(0): 148-158.
[5] C.Q. Liu, C. He, H.W. Chen, J.F. Nie. Precipitation on stacking faults in Mg-9.8wt%Sn alloy[J]. 材料科学与技术, 2020, 45(0): 230-240.
[6] Zifan Zhao, Heng Chen, Huimin Xiang, Fu-Zhi Dai, Xiaohui Wang, Wei Xu, Kuang Sun, Zhijian Peng, Yanchun Zhou. High-entropy (Y0.2Nd0.2Sm0.2Eu0.2Er0.2)AlO3: A promising thermal/environmental barrier material for oxide/oxide composites[J]. 材料科学与技术, 2020, 47(0): 45-51.
[7] Jinlong Du, Yuan Huang, Chan Xiao, Yongchang Liu. Building metallurgical bonding interfaces in an immiscible Mo/Cu system by irradiation damage alloying (IDA)[J]. 材料科学与技术, 2018, 34(4): 689-694.
[8] Cheng Liu, Yuman Zhu, Qun Luo, Bin Liu, Qinfen Gu, Qian Li. A 12R long-period stacking-ordered structure in a Mg-Ni-Y alloy[J]. 材料科学与技术, 2018, 34(12): 2235-2239.
[9] Cui Junjun, Chen Liqing. Microstructure and abrasive wear resistance of an alloyed ductile iron subjected to deep cryogenic and austempering treatments[J]. 材料科学与技术, 2017, 33(12): 1549-1554.
[10] Zhang Lin, Ma Shengcan, Ge Qing, Liu Kai, Jiang Qingzheng, Han Xingqi, Yang Sheng, Yu Kun, Zhong Zhenchen. A systematic study of the antiferromagnetic-ferromagnetic conversion and competition in MnNiGe:Fe ribbon systems[J]. 材料科学与技术, 2017, 33(11): 1362-1370.
[11] Zheng Xuehao,Zhang Hongwang. Experimental Determination of Deformation Induced Lattice Rotation by EBSD Technique for Slip System Analysis[J]. 材料科学与技术, 2017, 33(1): 90-98.
[12] Li Yang,Liu Xuqiang,Tan Lili,Ren Ling,Wan Peng,Hao Yongqiang,Qu Xinhua,Yang Ke,Dai Kerong. Enoxacin-loaded Poly (lactic-co-glycolic acid) Coating on Porous Magnesium Scaffold as a Drug Delivery System: Antibacterial Properties and Inhibition of Osteoclastic Bone Resorption[J]. 材料科学与技术, 2016, 32(9): 865-873.
[13] Hao Lijing,Li Tianjie,Zhao Naru,Cui Fuzhai,Du Chang,Wang Yingjun. Mediating Mesenchymal Stem Cells Responses and Osteopontin Adsorption via Oligo(ethylene glycol)-amino Mixed Self-assembled Monolayers[J]. 材料科学与技术, 2016, 32(9): 966-970.
[14] Guobo Lan, Mei Li, Ying Tan, Lihua Li, Xiaoming Yang, Limin Ma, Qingshui Yin, Hong Xia, Yu Zhang, Guoxin Tan, Chengyun Ning. Promoting Bone Mesenchymal Stem Cells and Inhibiting Bacterial Adhesion of Acid-Etched Nanostructured Titanium by Ultraviolet Functionalization[J]. J. Mater. Sci. Technol., 2015, 31(2): 182-190.
[15] N. Khedmi, M. Ben Rabeh, M. Kanzari. Structural Morphological and Optical Properties of SnSb2S4 Thin Films Grown by Vacuum Evaporation Method[J]. J. Mater. Sci. Technol., 2014, 30(10): 1006-1011.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.