J. Mater. Sci. Technol. ›› 2025, Vol. 218: 317-335.DOI: 10.1016/j.jmst.2024.08.037
• Review Article • Previous Articles
Peihua Wangyanga,1, Xiaolin Huanga,1, Xiao-Lei Shib,1, Niuniu Zhanga, Yu Yea, Shuangzhi Zhaoa, Jiamin Zhanga, Yingbo Liua, Fabi Zhanga, Xingpeng Liua, Haiou Lia, Tangyou Suna,*, Ying Penga,*, Zhi-Gang Chenb,*
Received:
2024-04-25
Revised:
2024-07-24
Accepted:
2024-08-27
Published:
2025-05-20
Online:
2024-09-10
Contact:
*E-mail addresses: suntangyou@guet.edu.cn (T. Sun), pengying@guet.edu.cn (Y. Peng), zhigang.chen@qut.edu.au (Z.-G. Chen)
About author:
1These authors contributed equally to this work.
Peihua Wangyang, Xiaolin Huang, Xiao-Lei Shi, Niuniu Zhang, Yu Ye, Shuangzhi Zhao, Jiamin Zhang, Yingbo Liu, Fabi Zhang, Xingpeng Liu, Haiou Li, Tangyou Sun, Ying Peng, Zhi-Gang Chen. Advances in Schottky parameter extraction and applications[J]. J. Mater. Sci. Technol., 2025, 218: 317-335.
[1] F. Schwierz, J.J. Liou, Microelectron. Reliab. 41 (2001) 145-168. [2] T.W. Crowe, R.J. Mattauch, H. Roser, W.L. Bishop, W.C. Peatman, X. Liu, Proc. IEEE 80 (1992) 1827-1841. [3] S.J. Yang, K.-T. Park, J.Im, S. Hong, Y. Lee, B.-W. Min, K. Kim, S. Im, Nat. Com-mun. 11 (2020) 1574. [4] A.M. Bagher, Am. J. Opt. Photo. 3 (2015) 94-113. [5] T. Feng, D. Xie, Y. Lin, Y. Zang, T. Ren, R. Song, H. Zhao, H. Tian, X. Li, H. Zhu, Appl. Phys. Lett. 99 (2011) 233505. [6] G. Li, Z. Su, L. Canil, D. Hughes, M.H. Aldamasy, J. Dagar, S. Trofimov, L. Wang, W. Zuo, J.J. Jerónimo-Rendon, Science 379 (2023) 399-403. [7] F. Zhang, T. Song, B. Sun, Nanotechnology 23 (2012) 194006. [8] J. Min, S. Demchyshyn, J.R. Sempionatto, Y. Song, B. Hailegnaw, C. Xu, Y. Yang, S. Solomon, C. Putz, L.E. Lehner, Nat. Electron. 6 (2023) 630-641. [9] B. Ezhilmaran, A. Patra, S. Benny, M.R. Sreelakshmi, V.V. Akshay, S.V. Bhat, C.S. Rout, J. Mater. Chem. C 9 (2021) 6122-6150. [10] Q. Xu, X. Wang, H. Zhang, W. Shao, J. Nie, Y. Guo, J. Wang, X. Ouyang, ACS Appl. Electron. Mater. 2 (2020) 879-884. [11] P. Hauchecorne, F. Gity, M. Martin, H. Okuno, S. Bhattacharjee, J. Moeyaert, D. Rouchon, B. Hyot, P.K. Hurley, T. Baron, A.C.S. Appl. Nano Mater. 4 (2021) 7820-7831. [12] L. Ai, Y. Pei, Z. Song, X. Yong, H. Song, G. Liu, M. Nie, G.I. Waterhouse, X. Yan, S. Lu, Adv. Sci. 10 (2023) 2207688. [13] L. Yuan, S. Liu, W. Chen, F. Fan, G. Liu, Adv. Electron. Mater. 7 (2021) 2100432. [14] F. Ghafoor, M. Ismail, H. Kim, M. Ali, S. Rehman, B. Ghafoor, M.A. Khan, H. Patil, S. Kim, M.F. Khan, Nano Energy 122 (2024) 109272. [15] T. Sun, F. Yu, X. Tang, H. Li, F. Zhang, Z. Xu, Q. Liao, Z. Yu, X. Liu, P. Wangyang, J. Materiomics 10 (2023) 440-447. [16] R. Ge, X. Wu, M. Kim, J. Shi, S. Sonde, L. Tao, Y. Zhang, J.C. Lee, D. Akinwande, Nano Lett. 18 (2018) 434-441. [17] X. Wu, Y. Gu, R. Ge, M.I. Serna, Y. Huang, J.C. Lee, D. Akinwande, NPJ 2D Mater. Appl. 6 (2022) 31. [18] B. Hu, X.-L. Shi, J.Zou, Z.-G. Chen, Chem. Eng. J. 437 (2022) 135268. [19] G. Liu, L. Wang, C. Sun, Z. Chen, X. Yan, L. Cheng, H.-M. Cheng, G.Q. Lu, Chem. Commun. (2009) 1383-1385. [20] W.-D. Liu, Y.Yu, M. Dargusch, Q. Liu, Z.-G. Chen, Renew. Sust. Energ. Rev. 141 (2021) 110800. [21] H. Xue, Q. He, G. Jian, S. Long, T. Pang, M. Liu, Nanoscale Res. Lett. 13 (2018) 1-13. [22] A. Itoh, H. Matsunami, Phys. Stat. Sol. A 162 (1997) 389-408. [23] W. Walukiewicz, J. Vac. Sci. Technol. B 5 (1987) 1062-1067. [24] L. Brillson, H. Mosbacker, M. Hetzer, Y. Strzhemechny, G. Jessen, D. Look, G. Cantwell, J. Zhang, J. Song, Appl. Phys. Lett. 90 (2007) 102-116. [25] X. Pan, Y. Li, B. Cheng, S.-J. Liang, F.Miao, Sci. China Phys. Mech. Astron. 66 (2023) 117504. [26] T. Xu, Y. Wang, Z. Xiong, Y. Wang, Y. Zhou, X. Li, Nanomicro Lett. 15 (2022) 6. [27] L. Yang, Y. Jin, Z. Fang, J. Zhang, Z. Nan, L. Zheng, H. Zhuang, Q. Zeng, K. Liu, B. Deng, H. Feng, Y. Luo, C. Tian, C. Cui, L. Xie, X. Xu, Z. Wei, Nanomicro Lett. 15 (2023) 111. [28] H.M. Manohara, E.W. Wong, E. Schlecht, B.D. Hunt, P.H. Siegel, in: Proceed-ings to the Joint 30th International Conference on Infrared and Millimeter Waves/13th International Conference on Terahertz Electronics, Williamsburg, VA, 2005, pp. 285-286. [29] T.W. Crowe, R.J. Mattauch, H.P. Roser, W.L. Bishop, W.C.B. Peatman, X.L. Liu, Proc. IEEE 80 (1992) 1827-1841. [30] M.K. Das, C. Capell, D.E. Grider, R. Raju, M. Schutten, J. Nasadoski, S. Leslie, J. Ostop, A. Hefner, in: Proceedings to the IEEE Energy Conversion Congress and Exposition (ECCE), Phoenix, AZ, 2011, pp. 2689-2692. [31] S. Wang, X. Pan, L. Lyu, C.-Y. Wang, P. Wang, C. Pan, Y. Yang, C. Wang, J. Shi, B. Cheng, ACS Nano 16 (2022) 4528-4535. [32] A.K. Geim, I.V. Grigorieva, Nature 499 (2013) 419-425. [33] H. Lim, S.I. Yoon, G. Kim, A.-R. Jang, H.S. Shin, Chem. Mater. 26 (2014) 4891-4903. [34] E.H. Rhoderick, R.H. Williams, Metal-semiconductor Contacts, 2nd ed., Claren-don Press, New York, 1988. [35] V. Aubry, F. Meyer, J. Appl. Phys. 76 (1994) 7973-7984. [36] O.Y. Olikh, J. Appl. Phys. 118 (2015) 024502. [37] H. Norde, J. Appl. Phys. 50 (1979) 5052-5053. [38] C.-D. Lien, F. So, M.-A. Nicolet, IEEE Trans. Electron Devices 31 (1984) 1502-1503. [39] K. Bohlin, J. Appl. Phys. 60 (1986) 1223-1224. [40] S. Cheung, N. Cheung, Appl. Phys. Lett. 49 (1986) 85-87. [41] J. Osvald, E. Dobrocka, Semicond. Sci. Technol. 11 (1996) 1198. [42] A. Ortiz-Conde, Y. Ma, J. Thomson, E. Santos, J. Liou, F.G. Sánchez, M. Lei, J. Fi-nol, P.Layman, Solid ·State Electron. 43 (1999) 845-848. [43] R. Nouchi, J. Appl. Phys. 116 (2014) 184505. [44] R. Bennett, IEEE Trans. Electron Devices 34 (1987) 935-937. [45] Z. Wang, W. Zang, Y. Shi, X. Zhu, G. Rao, P. Wangyang, J. Chu, C. Gong, X. Gao, H. Sun, Phys. Stat. Sol. A 217 (2020) 1901018. [46] D.K. Schroder, Hoboken, 2005. [47] J.H. Werner, H.H. Güttler, J. Appl. Phys. 69 (1991) 1522-1533. [48] M. Missous, E.H. Rhoderick, J. Appl. Phys. 69 (1991) 7142-7145. [49] G. Liang, T. Cui, K. Varahramyan, Solid ·State Electron. 47 (2003) 691-694. [50] W. Spicer, I. Lindau, P. Skeath, C. Su, P. Chye, Phys. Rev. Lett. 44 (1980) 420. [51] H. Card, E. Rhoderick, J. Phys.D: Appl. Phys. 4 (1971) 1589. [52] C. Henry, R. Logan, F. Merritt, J. Appl. Phys. 49 (1978) 3530-3542. [53] X.-L. Tang, H.-W. Zhang, H. Su, Z.-Y. Zhong, Physica. E: Low Dimens. Syst. Nanostruct. 31 (2006) 103-106. [54] A .J. Chiquito, C.A . Amorim, O.M. Berengue, L.S. Araujo, E.P. Bernardo, E.R. Leite, J. Phys.: Condens. Matter 24 (2012) 225303. [55] H.J. Werner, P.J. Knowles, J. Chem. Phys. 89 (1988) 5803-5814. [56] P. Blom, R. Wolf, J. Cillessen, M. Krijn, Phys. Rev. Lett. 73 (1994) 2107. [57] A. Di Bartolomeo, G. Luongo, F. Giubileo, N. Funicello, G. Niu, T. Schroeder, M. Lisker, G. Lupina, 2D Mater. 4 (2017) 025075. [58] D. Korucu, A. Turut, H. Efeoglu, Phys. B: Condens. Matter. 414 (2013) 35-41. [59] K. Sato, Y. Yasumura, J. Appl. Phys. 58 (1985) 3655-3657. [60] F. Padovani, G. Sumner, J. Appl. Phys. 36 (1965) 3744-3747. [61] R. Hackam, P. Harrop, IEEE Trans. Electron Devices 19 (1972) 1231- 1238. [62] A . Büyükbaş Uluşan, A .Tataroğlu, Y. Azizian-Kalandaragh, Ş. Altındal, J. Mater. Sci.: Mater. Electron. 29 (2018) 159-170. [63] A. Sinha, J. Poate, Appl. Phys. Lett. 23 (1973) 666-668. [64] Ş.Aydo˘gan, Ü. ˙Incekara, A.R. Deniz, A. Türüt, Microelectron. Eng. 87 (2010) 2525-2530. [65] K. Zeghdar, L. Dehimi, A. Saadoune, N. Sengouga, J. Semicond. 36 (2015) 124002. [66] A. Turut, M. Saglam, H. Efeoglu, N. Yalcin, M. Yildirim, B. Abay, Physica B: Condens. Matter 205 (1995) 41-50. [67] H. Patel, K. Patel, A. Patel, H. Jagani, K.D. Patel, G.K. Solanki, V.M. Pathak, J. Electron. Mater. 50 (2021) 5217-5225. [68] Y. Lv, Z. Lin, T.D. Corrigan, J. Zhao, Z. Cao, L. Meng, C. Luan, Z. Wang, H. Chen, J. Appl. Phys. 109 (2011) 074512. [69] B. Şa hin, H.Çetin, E. Ayyildiz, Solid State Commun. 135 (2005) 490-495. [70] J.H. Werner, Appl. Phys. A 47 (1988) 291-300. [71] M. Grajower, B. Desiatov, N. Mazurski, J. Shappir, J.B. Khurgin, U. Levy, ACS Photonics 4 (2017) 1015-1020. [72] A .A . Tarabsheh, M. Akmal, in: Proceedings to the 2019 6th International Con-ference on Electrical and Electronics Engineering (ICEEE), 2019, pp. 12-16. [73] M. Bashahu, P. Nkundabakura, Sol. Energy 81 (2007) 856-863. [74] Z. Ouennoughi, M. Chegaar, Solid State Electron. 43 (1999) 1985-1988. [75] A. Türüt, Turk. J. Phys. 44 (2020) 302-347. [76] P. Chattopadhyay, B. Raychaudhuri, Solid State Electron. 36 (1993) 605-610. [77] L. Calvet, R. Wheeler, M. Reed, Appl. Phys. Lett. 80 (2002) 1761-1763. [78] J.M. Ortega, W.C. Rheinboldt, New York, 1970. [79] K. Ejderha, N. Yıldırım, A. Türüt, B. Abay, Superlatt. Microstruct. 47 (2010) 241-252. [80] D. Fébba, E. Bortoni, A. Oliveira, R. Rubinger, Sol. Energy 201 (2020) 420-436. [81] V.J. Chin, Z. Salam, K. Ishaque, Appl. Energy 154 (2015) 500-519. [82] S. Aazou, M.S. White, M. Kaltenbrunner, Z. Sekkat, D.A.M. Egbe, E.M. Assaid, Energies 15 (2022) 1667. [83] R.M. Corless, G.H. Gonnet, D.E. Hare, D.J. Jeffrey, D.E. Knuth, Adv. Comput. Math. 5 (1996) 329-359. [84] A. Ortiz-Conde, F.J.G. Sánchez, J. Muci, Sol. Energy Mater. Sol. Cells 90 (2006) 352-361. [85] C.H. Belgacem, A .A . El-Amine, Silicon 7 (2015) 279-282. [86] W. Jung, M. Guziewicz, Mater. Sci. Eng. B-Adv. 165 (2009) 57-59. [87] G.-P. Ru, R.Van Meirhaeghe, S. Forment, Y.-L. Jiang, X.-P. Qu, S. Zhu, B.-Z. Li, Solid State Electron. 49 (2005) 606-611. [88] P. Gammon, A. Pérez-Tomás, V. Shah, O. Vavasour, E. Donchev, J. Pang, M. My-ronov, C.A. Fisher, M. Jennings, D.R. Leadley, J. Appl. Phys. 114 (2013) 223704. [89] H.K. Park, J. Choi, Adv. Electron. Mater. 4 (2018) 1700317. [90] S. Altındal Yerişk in, M.Balbaşı , S. Demirezen, Indian J. Phys. 91 (2017) 421-430. [91] J. Osvald, Phys. Stat. Sol. A 212 (2015) 2754-2758. [92] A. Grillo, A. Di Bartolomeo, Adv. Electron. Mater. 7 (2021) 2000979. [93] R.O. Ocaya, F. Yakuphano˘glu, Measurement 186 (2021) 110105. [94] Z. Wang, S. Luo, J. Tan, K. Liu, P. Wangyang, S. Huanglong, T. Sun, X. Liu, Y. Deng, H. Li, J. Electron. Mater. 51 (2022) 2843-2855. [95] R.E. Walpole, R.H. Myers, S.L. Myers, K. Ye, New York, 1993. [96] Y. Wang, S. Yang, D.R. Lambada, S. Shafique, Sensor Actuat, A-Phys. 314 (2020) 112232. [97] T. Yan, Z. Li, F. Cao, J. Chen, L. Wu, X. Fang, Adv. Mater. 34 (2022) 2201303. [98] P. Ji, S. Yang, Y. Wang, K. Li, Y. Wang, H. Suo, Y.T. Woldu, X. Wang, F. Wang, L. Zhang, Z. Jiang, Microsyst. Nanoeng. 8 (2022) 9. [99] Y. Liu, J. Guo, E. Zhu, L. Liao, S.-J. Lee, M. Ding, I. Shakir, V. Gambin, Y. Huang, X. Duan, Nature 557 (2018) 696-700. [100] K. Nassiri Nazif, A. Daus, J. Hong, N. Lee, S. Vaziri, A. Kumar, F. Nitta, M.E. Chen, S. Kananian, R. Islam, K.-H. Kim, J.-H. Park, A.S.Y. Poon, M.L. Brongersma, E. Pop, K.C. Sarawat, Nat. Commun. 12 (2021) 7034. [101] C.M. Went, J. Wong, P.R. Jahelka, M. Kelzenberg, S. Biswas, M.S. Hunt, A. Car-bone, H.A. Atwater, Sci. Adv. 5 (2019) eaax6061. [102] P. Liao, X. Zhao, G. Li, Y. Shen, M. Wang, Nanomicro. Lett. 10 (2018) 1-8. [103] Z. Xi, J. Ruan, C. Li, C. Zheng, Z. Wen, J. Dai, A. Li, D. Wu, Nat. Commun. 8 (2017) 15217. [104] B.-C. Min, K.Motohashi, C. Lodder, R. Jansen, Nat. Mater. 5 (2006) 817-822. [105] W. Huh, S. Jang, J.Y. Lee, D. Lee, D. Lee, J.M. Lee, H.-G. Park, J.C. Kim, H.Y. Jeong, G. Wang, C.-H. Lee, Adv. Mater. 30 (2018) 1801447. [106] X. Wei, X. Zhang, H. Yu, L. Gao, W. Tang, M. Hong, Z. Chen, Z. Kang, Z. Zhang, Y. Zhang, Nat. Electron. 7 (2024) 138-146. [107] X. Zhang, S. Chen, H. Ma, T. Sun, X. Cui, P. Huo, B. Man, C. Yang, Nanomaterials 14 (2024) 226. [108] J. Shi, J. Jie, W. Deng, G. Luo, X. Fang, Y. Xiao, Y. Zhang, X. Zhang, X. Zhang, Adv. Mater. 34 (2022) 2200380. [109] S. Lee, A. Nathan, Science 354 (2016) 302-304. [110] R. Schmitsdorf, T. Kampen, W. Mönch, J. Vac. Sci.Technol. B-Nanotechnol. Mi-croelectron. 15 (1997) 1221-1226. [111] B. Modi, J. Dhimmar, in: Proceedings to the 2012 1st International Conference on Emerging Technology Trends in Electronics, Communication & Networking, IEEE, 2012, pp. 1-6. [112] L.-F. Mao, Pramana 94 (2020) 16. [113] Y. Liu, Y. Liu, S. Qin, Y. Xu, R. Zhang, F. Wang, Nano Res. 10 (2017) 1880-1887. [114] B. Zhang, J. Liu, M. Ren, C. Wu, T.J. Moran, S. Zeng, S.E. Chavez, Z. Hou, Z. Li, A.M. LaChance, T.R. Jow, B.D. Huey, Y. Cao, L. Sun, Adv. Mater. 33 (2021) 2101374. [115] D. Wu, Y. Jiang, Y. Zhang, Y. Yu, Z. Zhu, X. Lan, F. Li, C. Wu, L. Wang, L. Luo, J. Mater. Chem. 22 (2012) 23272-23276. [116] V. Mikhelashvili, R. Padmanabhan, G. Eisenstein, J. Appl. Phys. 122 (2017) 034503. [117] G. Bhattacharya, A. Venimadhav, J. Phys.D: Appl. Phys. 55 (2022) 435101. [118] Y. Liu, P. Stradins, S.-H. Wei, Sci. Adv. 2 (2016) e1600069. [119] G. Myeong, W. Shin, K. Sung, S. Kim, H. Lim, B. Kim, T. Jin, J. Park, T. Lee, M.S. Fuhrer, K. Watanabe, T. Taniguchi, F. Liu, S. Cho, Nat. Commun. 13 (2022) 4328. [120] G. Milano, L. Boarino, C. Ricciardi, Nanotechnology 30 (2019) 244001. [121] W. Li, D. Jena, H.G. Xing, J. Appl. Phys. 131 (2022) 015702. [122] M. Hara, S. Asada, T. Maeda, T. Kimoto, Appl. Phys. Express 13 (2020) 041001. [123] Y.-J. Lin, Appl.Phys. Lett. 86 (2005) 122109. [124] C. Crowell, V. Rideout, Solid State Electron. 12 (1969) 89-105. [125] M. Hara, H. Tanaka, M. Kaneko, T. Kimoto, Appl. Phys. Lett. 120 (2022) 172103. [126] J. Appenzeller, M. Radosavljevic, J. Knoch, P. Avouris, Phys. Rev. Lett. 92 (2004) 048301. [127] L. Lv, J. Yu, M. Hu, S. Yin, F. Zhuge, Y. Ma, T. Zhai, Nanoscale 13 (2021) 6713-6751. [128] R.A. Vega, IEEE Trans. Electron Devices 53 (2006) 1593-1600. [129] L. Wu, A. Wang, J. Shi, J. Yan, Z. Zhou, C. Bian, J. Ma, R. Ma, H. Liu, J. Chen, Y. Huang, W. Zhou, L. Bao, M. Ouyang, S.J. Pennycook, S.T. Pantelides, H.-J. Gao, Nat.Nanotechnol. 16 (2021) 882-887. [130] J. Di, J. Du, Z. Lin, S. Liu, J. Ouyang, J. Chang, InfoMat 3 (2021) 293-315. [131] I. Missoum, Y. Ocak, M. Benhaliliba, C. Benouis, A. Chaker, Synth. Met. 214 (2016) 76-81. [132] Ö. Güllü, Ş. Aydo˘gan, A. Türüt, Microelectron.Eng. 85 (2008) 1647-1651. [133] W. Hu, T. Wang, J. Yang, J. Mater. Chem. C 3 (2015) 4756-4761 . |
[1] | Yulin Wu, Shan Wu, Jinyao Wang, Jiangying Lu, Xu Zheng, Shudi Lu, Shizhong Yue, Kong Liu, Zhijie Wang, Shengchun Qu. Facet orientation control of tin-lead perovskite for efficient all-perovskite tandem solar cells [J]. J. Mater. Sci. Technol., 2025, 213(0): 118-124. |
[2] | Yue Li, Yuhua Wang, Zichao Xu, Bo Peng, Ngoc Quang Tran, Kuldeep K Saxena, S. Vadivel, Xinghui Liu. MXene-based materials for efficient applications in perovskite solar cells: A review [J]. J. Mater. Sci. Technol., 2025, 215(0): 214-232. |
[3] | Mi Kyong Kim, Su Min Park, Haedam Jin, Jeongbeom Cha, Dohun Baek, Tae Oh Yoon, Gibaek Lee, Se Gyo Han, Sae Byeok Jo, Seok Joo Yang, Min Kim. Uniaxial alignment of perovskite nanowires via brush painting technique for efficient flexible polarized photodetectors [J]. J. Mater. Sci. Technol., 2025, 207(0): 24-33. |
[4] | Yijun Bai, Tong Wang, Jiabao Yang, Xingyu Pu, Bingxiu Xue, Hui Chen, Xilai He, Guangpeng Feng, Shiyao Jia, Jianbo Yin, Qi Cao, Xuanhua Li. Enhancing efficiency and stability of inverted perovskite solar cells through synergistic suppression of multiple defects via poly(ionic liquid)-buried interface modification [J]. J. Mater. Sci. Technol., 2025, 212(0): 281-288. |
[5] | Bongho Jang, Junhee Lee, Hongki Kang, Jaewon Jang, Hyuk-Jun Kwon. Schottky barrier modulation of bottom contact SnO2 thin-film transistors via chloride-based combustion synthesis [J]. J. Mater. Sci. Technol., 2023, 148(0): 199-208. |
[6] | Yeonghun Yun, Hanbyeol Cho, Jina Jung, Sung Woong Yang, Devthade Vidyasagar, Rajendra Kumar Gunasekaran, Sangwook Lee. High-performance self-powered color filter-free blue photodetector based on wide-bandgap halide perovskites [J]. J. Mater. Sci. Technol., 2023, 152(0): 100-108. |
[7] | Guangcan Luo, Ziling Zhang, Yabing Wang, Qun Deng, Shengtao Pan, Tengfei Wang, Qinghong Li, Kaixiang Liu, Pengfei Kong, Jing Zhang, Shengyun Luo, Hong Lin. A self-powered ultraviolet photodetector with van der Waals Schottky junction based on TiO2 nanorod arrays/Au-modulated V2CTx MXene [J]. J. Mater. Sci. Technol., 2023, 156(0): 83-91. |
[8] | Yong Zhang, Jian Yao, Zhen Zhang, Rong Zhang, Li Li, Yu Teng, Zongjie Shen, Lixing Kang, Limin Wu, Xiaosheng Fang. Two-dimensional perovskite Pb2Nb3O10 photodetectors [J]. J. Mater. Sci. Technol., 2023, 164(0): 95-101. |
[9] | Dohun Baek, Geon Yeong Park, Jeongbeom Cha, Hyemi Na, Dong Seok Ham, Min Kim. Enhancing the efficiency and scalability of perovskite solar cells through pseudo-halide salt addition [J]. J. Mater. Sci. Technol., 2023, 165(0): 161-169. |
[10] | Bin Liu, Yuqi Wang, Yanjie Wu, Biao Dong, Hongwei Song. Novel broad spectral response perovskite solar cells: A review of the current status and advanced strategies for breaking the theoretical limit efficiency [J]. J. Mater. Sci. Technol., 2023, 140(0): 33-57. |
[11] | In Su Jin, Bhaskar Parida, Jae Woong Jung. Simultaneously enhanced efficiency and ambient stability of inorganic perovskite solar cells by employing tetramethylammonium chloride additive in CsPbI2Br [J]. J. Mater. Sci. Technol., 2022, 102(0): 224-231. |
[12] | Yazi Wang, Shasha Lv, Zhengcao Li. Review on incorporation of alkali elements and their effects in Cu(In,Ga)Se2 solar cells [J]. J. Mater. Sci. Technol., 2022, 96(0): 179-189. |
[13] | Kun Wang, Zeyuan Su, Yali Chen, Heng Qi, Ting Wang, Hao Wang, Youqian Zhang, Li Cao, Qian Ye, Fobao Huang, Yu Tong, Hongqiang Wang. Dual bulk and interface engineering with ionic liquid for enhanced performance of ambient-processed inverted CsPbI3 perovskite solar cells [J]. J. Mater. Sci. Technol., 2022, 114(0): 165-171. |
[14] | Huimin Xiang, Pengyun Liu, Wei Wang, Ran Ran, Wei Zhou, Zongping Shao. Sodium fluoride sacrificing layer concept enables high-efficiency and stable methylammonium lead iodide perovskite solar cells [J]. J. Mater. Sci. Technol., 2022, 113(0): 138-146. |
[15] | Xiaofang Ye, Hongkun Cai, Jian Su, Jingtao Yang, Jian Ni, Juan Li, Jianjun Zhang. Preparation of hysteresis-free flexible perovskite solar cells via interfacial modification [J]. J. Mater. Sci. Technol., 2021, 61(0): 213-220. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||