J. Mater. Sci. Technol. ›› 2025, Vol. 218: 88-94.DOI: 10.1016/j.jmst.2024.08.019
• Research Article • Previous Articles Next Articles
Changjiang Baoa,b,1, Ziqi Guana,1,*, Zhenzhuang Lia, Haoyu Wanga, Yuanwen Fenga, Qing Guoa, Kun Zhanga, Yanxu Wanga, Liang Zuob, Bing Lia,*
Received:
2024-07-12
Revised:
2024-08-08
Accepted:
2024-08-19
Published:
2025-05-20
Online:
2024-09-06
Contact:
*E-mail addresses: zqguan@imr.ac.cn (Z. Guan), bingli@imr.ac.cn (B. Li)
About author:
1These authors contributed equally to this work.
Changjiang Bao, Ziqi Guan, Zhenzhuang Li, Haoyu Wang, Yuanwen Feng, Qing Guo, Kun Zhang, Yanxu Wang, Liang Zuo, Bing Li. Realizing overall trade-off of barocaloric performances in 1-bromoadamantane-graphene composites[J]. J. Mater. Sci. Technol., 2025, 218: 88-94.
[1] Low-carbon heating and cooling: overcoming one of world’s most important net zero challenges (climate change: science and solutions, June2021). https://royalsociety.org/-/media/policy/projects/climate-change-science-solutions/climate-science-solutions-heating-cooling.pdf [2] Z. Zhang, K. Li, S.C. Lin, R.Q. Song, D.H. Yu, Y.D. Wang, J.F. Wang, S. Kawaguchi, Z. Zhang, C.Y. Yu, X.D. Li, J. Chen, L.H. He, R. Mole, B. Yuan, Q.Y. Ren, K. Qian, Z.L. Cai, J.G. Yu, M.C. Wang, C.Y. Zhao, X. Tong, Z.D. Zhang, B. Li, Sci. Adv. 9 (2023) eadd0374. [3] Z. Zhang, X.M. Jiang, T. Hattori, X. Xu, M. Li, C.Y. Yu, Z. Zhang, D.H. Yu, R. Mole, S.I. Yano, J. Chen, L.H. He, C.W. Wang, H. Wang, B. Li, Z.D. Zhang, Mater. Horiz. 10 (2023) 977-982. [4] J.Y. Seo, J.D. Braun, V.M. Dev, J.A. Mason, J. Am. Chem.Soc. 144 (2022) 6493. [5] M.O. McLinden, J.S. Brown, R. Brignoli, A.F. Kazakov, P.A. Domanski, Nat. Com-mun. 8 (2017) 14476. [6] Molenbroek, Savings and Benefits of Global Regulations For Energy Efficient Products. Final Report, European Commission, 2015. [7] D. Sooben, N. Purohit, R. Mohee, F. Meunier, M.S. Dasgupta, Int. J. Refrig. 103 (2019) 264-273. [8] P. Purohit, Z. Klimont, L. Höglund-Isaksson, N. Borgford-Parnell, Nat. Clim. Change 12 (2022) 339-342. [9] G.V. Brown, J. Appl. Phys. 47 (1976) 3673-3680. [10] P. Liu, D.S. Yuan, C. Dong, G.T. Lin, E.G. Víllora, J. Qi, X.G. Zhao, K. Shimamura, J. Ma, J.F. Wang, Z.D. Zhang, B. Li, NPG Asia Mater. 15 (2023) 41. [11] W.F. Xie, X. Xu, F.B. Li, G.W. Zhai, Y.L. Yue, M. Li, H. Wang, Appl. Phys. Lett. 125 (2024) 033903. [12] J. Liu, T. Gottschall, K.P. Skokov, J.D. Moore, O. Gutfleisch, Nat. Mater. 11 (2012) 620-626. [13] A.S. Mischenko, Q. Zhang, J.F. Scott, R.W. Whatmore, N.D. Mathur, Science 311 (2006) 1270-1271. [14] B. Neese, B. Chu, S.G. Lu, Y. Wang, E. Furman, Q.M. Zhang, Science 321 (2008) 821-823. [15] S.G. Lu, Q.M. Zhang, Adv. Mater. 21 (2009) 1983-1987. [16] X.T. Liu, Z.Y. Wu, T. Guan, H.D. Jiang, P.Q. Long, X.Q. Li, C.M. Ji, S. Chen, Z.H. Sun, J.H. Luo, Nat. Commun. 12 (2021) 5502. [17] S.A. Nikitin, G. Myalikgulyev, M.P. Annaorazov, A.L. Tyurin, R.W. Myndyev, S.A. Akopyan, Phys. Lett. A 171 (1992) 234-236. [18] J. Tušek, K. Engelbrecht, R. Millán-Solsona, L. Mañosa, E. Vives, L.P. Mikkelsen, N. Pryds, Adv. Energy Mater. 13 (2015) 1500361. [19] D.Y. Cong, W.X. Xiong, A. Planes, Y. Ren, L. Mañosa, P.Y. Cao, Z.H. Nie, X.M. Sun, Z. Yang, X.F. Hong, Y.D. Wang, Phys. Rev. Lett. 122 (2019) 255703. [20] K. Zhang, R.Q. Song, J. Qi, Z. Zhang, C.Y. Yu, K. Li, Z.D. Zhang, B. Li, Adv. Funct. Mater. 32 (2022) 2112622. [21] F.B. Li, M. Li, X. Xu, Z.C. Yang, H. Xu, C.K. Jia, K. Li, J. He, B. Li, H. Wang, Nat. Commun. 11 (2020) 4190. [22] X. Su, Z.P. Zhang, J. Liu, Q. Zheng, Z.X. Li, J. Shen, B. Li, J. Du, J. Phys. Chem.Lett. 15 (2024) 1962-1968. [23] Z.P. Zhang, T.J. Xiong, Z. Zhang, B. Li, P. Tong, J. Shen, Q. Zheng, J. Du, J. Phys. Chem.Lett. 15 (2024) 7141-7146. [24] C.Y. Yu, J.Y. Huang, J. Qi, P. Liu, D. Li, T. Yang, Z.D. Zhang, B. Li, APL Mater. 10 (2022) 011109. [25] Z.Y. Wei, Y. Shen, Z. Zhang, J.P. Guo, B. Li, E.K. Liu, Z.D. Zhang, J. Liu, APL Mater. 8 (2020) 051101. [26] C.M. Miliante, A.M. Christmann, R.P. Soares, J.R. Bocca, C.S. Alves, A.M.G. Car-valho, A.R. Muniz, J. Mater. Chem. A 10 (2022) 8344. [27] L. Mañosa, A. Planes, Appl. Phys. Lett. 116 (2020) 050501. [28] L. Cirillo, A. Greco, C. Masselli, Therm. Sci. Eng. Prog. 33 (2022) 101380. [29] P. Lloveras, Barocaloric Effects in the Solid State: Materials and Methods, IOP Publishing, Bristol, 2023. pp. 206-235. [30] F.B. Li, M. Li, C. Niu, H. Wang, Appl. Phys. Lett. 120 (2022) 073902. [31] B. Li, Y. Kawakita, S. Ohira-Kawamura, T. Sugahara, H. Wang, J.F. Wang, Y.N. Chen, S. Kawaguchi, S. Kawaguchi, K. Ohara, K. Li, D.H. Yu, R. Mole, T. Hat-tori, T. Kikuchi, S. Yano, Z. Zhang, Z. Zhang, W.J. Ren, S.C. Lin, O. Sakata, K. Nakajima, Z.D. Zhang, Nature 567 (2019) 506-510. [32] P. Lloveras, J.L. Tamarit, MRS Energy Sustain. 8 (2021) 3-15. [33] D. Boldrin, Appl. Phys. Lett. 118 (2021) 170502. [34] Y. Liu, H.B. Zhou, Z.T. Xu, D. Liu, J. Li, F.X. Hu, T.Y. Ma, Mater. Res. Lett. 10 (2022) 675-681. [35] A . Bazyleva, A .Blokhin, G.J. Kabo, A.G. Kabo, Y.U. Paulechka, J. Chem. Thermo-dyn. 37 (2005) 643-657. [36] A. Aznar, P. Negrier, A. Planes, L. Mañosa, E. Stern-Taulats, X. Moya, M. Barrio, J.L. Tamarit, P. Lloveras, Appl. Mater. Today 23 (2021) 101023. [37] J.Y. Seo, R.D. McGillicuddy, A.H. Slavney, S. Zhang, R. Ukani, A .A . Yakovenko, S.L. Zheng, J.A. Mason, Nat. Commun. 13 (2022) 2536. [38] A.B. Bazyleva, G.J. Kabo, Y.U. Paulechka, D.H. Zaitsau, A.V. Blokhin, V.M. Sevruk, Thermochim. Acta 436 (2005) 56-67. [39] F. Ma, H.B. Zheng, Y.J. Sun, D. Yang, K.W. Xu, P.K. Chu, Appl. Phys. Lett. 101 (2012) 111904. [40] K.R. Pyun, S.H. Ko, Mater. Today Energy 12 (2019) 431-442. [41] Q.Y. Zheng, S.E. Murray, Z. Diao, A. Bhutani, D.P. Shoemaker, D.G. Cahill, Phys. Rev. Mater. 2 (2018) 075401. [42] J.C. Lin, P. Tong, X.K. Zhang, Z.C. Wang, Z. Zhang, B. Li, G.H. Zhong, J. Chen, Y.D. Wu, H.L. Lu, L.H. He, B. Bai, L.S. Ling, W.H. Song, Z.D. Zhang, Y.P. Sun, Mater. Horiz. 7 (2020) 2690-2695. [43] T.K. Song, S.M. Lee, Y.S. Yu, S.I. Kwun, Ferroelectrics 159 (1994) 215-220. [44] Y. Suemune, J. Phys. Soc.Jpn. 20 (1965) 174-175. [45] K. Nishikawa, Y. Takeda, T. Motohiro, Appl. Phys. Lett. 102 (2013) 033903. [46] C.H. Son, J.H. Morehouse, J. Thermophys.Heat Transfer. 5 (1991) 122-124. [47] N. Zhang, Y.L. Song, Y.X. Du, Y.P. Yuan, G.M. Xiao, Y.W. Gui, Adv. Eng. Mater. 20 (2018) 1800237. [48] S. Yuce, M. Barrio, B. Emre, E. Stern-Taulats, A. Planes, J.L. Tamarit, Y. Mudryk, K.A. Gschneidner, V.K. Pecharsky, L. Mañosa, Appl. Phys. Lett. 101 (2012) 071906. [49] L. Mañosa, D. González-Alonso, A. Planes, M. Barrio, J.L. Tamarit, I.S. Titov, M. Acet, A. Bhattacharyya, S. Majumdar, Nat. Commun. 2 (2011) 595. [50] P. Lloveras, E. Stern-Taulats, M. Barrio, J.L. Tamarit, S. Crossley, W. Li, V. Pom-jakushin, A.Planes, L. Mañosa, N.D. Mathur, X. Moya, Nat. Commun. 6 (2015) 8801. [51] E. Stern-Taulats, P. Lloveras, M. Barrio, E. Defay, M. Egilmez, A. Planes, J.L. Tamarit, L. Mañosa, N.D. Mathur, X. Moya, APL Mater. 4 (2016) 091102. [52] K. Qian, S.C. Lin, Z. Zhang, B. Li, Y.C. Peng, Y.J. Li, C.Y. Zhao, Cell Rep. Phys. Sci. 5 (2024) 101981. [53] Q.Y. Ren, J. Qi, D.H. Yu, Z. Zhang, R.Q. Song, W.L. Song, B. Yuan, T.H. Wang, W.J. Ren, Z.D. Zhang, X. Tong, B. Li, Nat. Commun. 13 (2022) 2293. [54] A. Aznar, P. Lloveras, M. Romanini, M. Barrio, J.L. Tamarit, C. Cazorla, D. Er-randonea, N.D. Mathur, A. Planes, X. Moya, L. Mañosa, Nat. Commun. 8 (2017) 1851 . |
[1] | Zhaoyang Li, Yu Sun, Feiyang Hu, Di Liu, Xiangping Zhang, Juanna Ren, Hua Guo, Marwan Shalash, Mukun He, Hua Hou, Salah M. El-Bahy, Duo Pan, Zeinhom M. El-Bahy, Zhanhu Guo. An overview of polymer-based thermally conductive functional materials [J]. J. Mater. Sci. Technol., 2025, 218(0): 191-210. |
[2] | Mengdi Gan, Liping Lai, Jiankun Wang, Jun Wang, Lin Chen, Jingjin He, Jing Feng, Xiaoyu Chong. Suppressing the oxygen-ionic conductivity and promoting the phase stability of the high-entropy rare earth niobates via Ta substitution [J]. J. Mater. Sci. Technol., 2025, 209(0): 79-94. |
[3] | Hao Jiang, Jindao Li, Yuhui Xie, Hua Guo, Mukun He, Xuetao Shi, Yi Mei, Xinxin Sheng, Delong Xie. Design of efficient microstructured path by magnetic orientation boron nitride nanosheets/MnFe2O4 enabling waterborne polyurethane with high thermal conductivity and flame retardancy [J]. J. Mater. Sci. Technol., 2025, 209(0): 207-218. |
[4] | Zifan Zhao, Ziyang Ruan, Rong Li, Shixiao Yan, Xiaoliang Sun, Chi Liu, Di Zhang, Bin Xu, Zhiyi Ren, Meng Wang, Jianyu Li, Jiang Tian, Yehua Jiang, Jing Feng, Yanchun Zhou. High entropy pyrochlore (La0.3Gd0.3Ca0.4)2(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)2O7 ceramic with amorphous-like thermal conductivity for environmental/thermal barrier coating applications [J]. J. Mater. Sci. Technol., 2025, 205(0): 315-326. |
[5] | Lei Hu, Li Zhang, Wei Cui, Qinyou An, Ting Ma, Qiuwang Wang, Liqiang Mai. Carbon-based porous materials for performance-enhanced composite phase change materials in thermal energy storage: Materials, fabrication and applications [J]. J. Mater. Sci. Technol., 2025, 210(0): 204-226. |
[6] | B. Ke Dong, C. Long Wei, J. Chao Lin, L. Lu Xie, K. Ke Liu, T. Jiao Xiong, W. Hai Song, Peng Tong, Y. Ping Sun. A biomimetic aluminum composite exhibiting gradient-distributed thermal expansion, high thermal conductivity, and highly directional toughness [J]. J. Mater. Sci. Technol., 2025, 213(0): 90-97. |
[7] | Chouxuan Wang, Zhongguo Zhao, Shengtai Zhou, Lei Wang, Xinyue Liu, Rong Xue. Facile fabrication of densely packed ammoniated alumina/MXene/bacterial cellulose composite films for enhancing thermal conductivity and photothermal conversion performance [J]. J. Mater. Sci. Technol., 2025, 213(0): 162-173. |
[8] | Tae-Hyeong Jeong, Pyeong-Jun Park, Sebastian Anand, Dineshkumar Mani, Jun-Beom Kim, Sung-Ryong Kim. Metal ion-crosslinked thermoconductive sugar-functionalized graphene fluoride-based cellulose papers with enhanced mechanical properties and electrical insulation [J]. J. Mater. Sci. Technol., 2025, 214(0): 204-213. |
[9] | Yali Dong, Huitao Yu, Yiyu Feng, Wei Feng. Structure, properties and applications of multi-functional thermally conductive polymer composites [J]. J. Mater. Sci. Technol., 2024, 200(0): 141-161. |
[10] | Jinhong Liu, Jianhao Xu, Kyung-Wook Paik, Peng He, Shuye Zhang. In-situ isothermal aging TEM analysis of a micro Cu/ENIG/Sn solder joint for flexible interconnects [J]. J. Mater. Sci. Technol., 2024, 169(0): 42-52. |
[11] | Jiacheng Ge, Yao Gu, Zhongzheng Yao, Sinan Liu, Huiqiang Ying, Chenyu Lu, Zhenduo Wu, Yang Ren, Jun-ichi Suzuki, Zhenhua Xie, Yubin Ke, Jianrong Zeng, He Zhu, Song Tang, Xun-Li Wang, Si Lan. Evolution of medium-range order and its correlation with magnetic nanodomains in Fe-Dy-B-Nb bulk metallic glasses [J]. J. Mater. Sci. Technol., 2024, 176(0): 224-235. |
[12] | Wei Liu, Biao Chen, Liqing Xu, Dongyang Wang, Changsheng Xiang, Xiangdong Ding, Yu Xiao. Origin of low lattice thermal conductivity in promising ternary PbmBi2S3+m (m = 1-10) thermoelectric materials [J]. J. Mater. Sci. Technol., 2024, 198(0): 12-19. |
[13] | Yuan Ye, Yu Zhang, Shuzhi Zhang, Yuyong Chen, Jianfei Sun. Designing a hybrid microstructure of Ti-43Al-9V-0.3Y alloy and its non-equilibrium phase transition mechanism via two-step forging [J]. J. Mater. Sci. Technol., 2024, 192(0): 251-264. |
[14] | L. Lu Xie, T. Fei Shi, J. Chao Lin, X. Kai Zhang, X. Kang Zhong, K. Ke Liu, B. Ke Dong, Cheng Yang, X. Lian Wang, T. Jiao Xiong, W. Sheng Yan, J. Ping Xu, H. Can Chen, Wen Yin, Ming Li, Peng Tong, W. Hai Song, Y. Ping Sun. The enhanced negative thermal expansion in less-oxygen-vacancies copper pyrophosphate [J]. J. Mater. Sci. Technol., 2023, 146(0): 80-85. |
[15] | Jun Wang, Xiaoyu Chong, Liang Lv, Yuncheng Wang, Xiaolan Ji, Haitao Yun, Jing Feng. High-entropy ferroelastic (10RE0.1)TaO4 ceramics with oxygen vacancies and improved thermophysical properties [J]. J. Mater. Sci. Technol., 2023, 157(0): 98-106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||