J. Mater. Sci. Technol. ›› 2025, Vol. 205: 315-326.DOI: 10.1016/j.jmst.2024.02.089
• Research Article • Previous Articles
Zifan Zhaoa,*, Ziyang Ruana, Rong Lia, Shixiao Yanb, Xiaoliang Sunb, Chi Liub, Di Zhangc, Bin Xuc, Zhiyi Renc, Meng Wangc, Jianyu Lia, Jiang Tiana, Yehua Jianga, Jing Fenga,*, Yanchun Zhoud,*
Received:
2023-12-24
Revised:
2024-02-01
Accepted:
2024-02-17
Published:
2025-01-10
Online:
2024-04-29
Contact:
*E-mail addresses: 710729435@qq.com (Z. Zhao), jingfeng@kmust.edu.cn (J. Feng), yczhou@alum.imr.ac.cn (Y. Zhou)
Zifan Zhao, Ziyang Ruan, Rong Li, Shixiao Yan, Xiaoliang Sun, Chi Liu, Di Zhang, Bin Xu, Zhiyi Ren, Meng Wang, Jianyu Li, Jiang Tian, Yehua Jiang, Jing Feng, Yanchun Zhou. High entropy pyrochlore (La0.3Gd0.3Ca0.4)2(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)2O7 ceramic with amorphous-like thermal conductivity for environmental/thermal barrier coating applications[J]. J. Mater. Sci. Technol., 2025, 205: 315-326.
[1] H. Kakisawa, T. Nishimura, J. Eur. Ceram.Soc. 38 (2018) 655-663. [2] H. Ohnabe, S. Masaki, M. Onozuka, K. Miyahara, T. Sasa, Compos. Part A-Appl. Sci. Manuf. 30 (1999) 489-496. [3] J.A.DiCarlo, M. Roode, in: Proceedings of the ASME Turbo Expo 2006, Power for Land, Sea, and Air, Barcelona, Spain, 2006 May 8-11. [4] M. Peter, B. Wolfgang, J. Eur. Ceram.Soc. 33 (2013) 2645-2653. [5] T. Behrendt, S. Hackemann, P. Mechnich, Y. Shi, D. Koch, Development and test of oxide/oxide ceramic matrix composites combustor liner demonstrators for Aero-engines, J. Eng. Gas. Turbine Power 139 (2017) 031507. [6] A. Szweda, S. Butner, J. Ruffoni, C. Bacalski, J. Lane, J. Morrison, G. Merrill, M.V. Roode, A. Fahme, N. Miriyala, D. Leroux, in: Proceedings of the ASME Turbo Expo 2005, Power for Land, Sea, and Air, Reno, Nevada, U.S., 2005 June 6-9. [7] C.J. Armani, M.B.Ruggles-Wrenn, G.E. Fair, R.S. Hay, Int. J. Appl. Ceram. Tech-nol. 10 (2013) 276-284. [8] E.J. Opila, D.L. Myers, J. Am. Ceram.Soc. 87 (2004) 1701-1705. [9] J.S. Wallace, J. Ilavsky, J. Therm.Spray Technol. 7 (1998) 521-526. [10] X. Ren, W. Pan, Acta Mater. 69 (2014) 397-406. [11] J.A. Slifka, J.B. Filla, M.J. Phelps, G. Bancke, C.C. Berndt, J. Therm.Spray Technol. 7 (1998) 43-46. [12] J.R. Brandon, R. Taylor, Surf. Coat. Technol. 46 (1991) 75-90. [13] X. Cao, J. Li, X. Zhong, J. Zhang, Y. Zhang, R. Vassen, D. Stoever, Mater. Lett. 62 (2008) 2667-2669. [14] R. Vassen, X. Cao, F. Tietz, D. Basu, D. Stöver, J. Am. Ceram.Soc. 83 (2000) 2023-2028. [15] J. Yang, X. Qian, W. Pan, R. Yang, Z. Li, Y. Han, M. Zhao, M. Huang, C. Wan, Adv. Mater. 31 (2019) 1808222. [16] R. Berman, D.W. Sciama, D.H. Wilkinson, Thermal Conduction in Solids, Claren-don Press, Oxford, UK, 1976. [17] D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448-511. [18] C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J. Maria, Nat. Commun. 6 (2015) 8485. [19] H.M. Xiang, Y. Xing, F.Z. Dai, H. Wang, S. Lei, L. Miao, G. Zhang, Y. Wang, X. Qi, L. Yao, J. Adv. Ceram. 10 (2021) 57. [20] C. Oses, C. Toher, S. Curtarolo, Nat. Rev. Mater. 5 (2020) 295-309. [21] B. Jiang, Y. Yu, J. Cui, X. Liu, L. Xie, J. Liao, Q. Zhang, Y. Huang, S. Ning, B. Jia, B. Zhu, S. Bai, L. Chen, S.J. Pennycook, J. He, Science 371 (2021) 830-834. [22] L. Chen, K. Luo, B. Li, M. Hu, J. Feng, J. Adv. Ceram. 12 (2023) 399-413. [23] K. Wang, J. Zhu, H. Wang, K. Yang, Y. Zhu, Y. Qing, Z. Ma, L. Gao, Y. Liu, S. Wei, Y. Shu, Y. Zhou, J. He, J. Adv. Ceram. 11 (2022) 1571-1582. [24] Z. Teng, L. Zhu, Y.Q. Tan, S.F. Zeng, Y.H. Xia, Y.G. Wang, H.B. Zhang, J. Eur.Ce-ram. Soc. 40 (2020) 1639-1643. [25] L. Spiridigliozzi, C. Ferone, R. Cioffi, G. Dell’Agli, Acta Mater. 202 (2021) 181-189. [26] L. Zhou, F. Li, J.X. Liu, S.K. Sun, Y.C. Liang, G.J. Zhang, J. Hazard. Mater. 415 (2021) 125596. [27] Z.F. Zhao, H.M. Xiang, F.Z. Dai, Z.J. Peng, Y.C. Zhou, J. Mater. Sci.Technol. 35 (2019) 2647-2651. [28] Z.F. Zhao, H. Chen, H.M. Xiang, F.Z. Dai, X.H. Wang, J. Mater. Sci.Technol. 39 (2020) 167-172. [29] Y.F. Wang, F. Yang, P. Xiao, Acta Mater. 60 (2012) 7024-7033. [30] Y. Han, X. Liu, Q. Zhang, M. Huang, Y. Li, W. Pan, P. Zong, L. Li, Z. Yang, Y. Feng, P. Zhang, C. Wan, Nat. Commun. 13 (2022) 2871. [31] Y. Wang, P. Xiao, H. Yang, S. Wang, R. Liu, Y. Cao, Ceram. Int. 44 (2018) 6590-6600. [32] X. Cao, J. Mater. Sci.Technol. 23 (2007) 15-35. [33] M. Zhao, X.R. Ren, W. Pan, J. Eur. Ceram.Soc. 35 (2015) 1055-1061. [34] J.E. Post, D.L. Bish, Mod. Powder Diffr. 20 (1989) 277-308. [35] J. Krautkrämer, H. Krautkrämer, Germany, 1990. [36] Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics, ASTM, 2019 https://www.astm.org/c1327-15r19.html [37] A.G. Evans, E.A. Charles, J. Am. Ceram.Soc. 59 (1976) 371-376. [38] J. Leitner, P. Voˇnka, D. Sedmidubský, Thermochim. Acta 497 (2010) 7-13. [39] I. Barin, Germany, 2008. [40] W.J. Parker, R.J. Jenkins, C.P. Butler, J. Appl. Phys. 32 (1961) 1679-1984. [41] C. Kittle, USA, 1996. [42] Z. Lou, P. Zhang, J. Zhu, L. Gong, J. Xu, Q. Chen, M.J. Reece, H. Yan, F. Gao, J. Eur. Ceram.Soc. 42 (2022) 3480-3488. [43] D.R. Clarke, Surf. Coat. Technol.163-164 (2003) 67-74. [44] D. Song, T. Song, U. Paik, G. Lyu, Y. Jung, H. Jeon, Y. Oh, Mater. Des. 210 (2021) 110059. [45] Z. Sun, Y. Zhou, J. Wang, M. Li, J. Am. Ceram.Soc. 91 (2010) 2623-2629. [46] A. Du, C. Wan, Z. Qu, P. Wei, J. Am. Ceram.Soc. 92 (2010) 2687-2692. [47] A.J. Wright, Q.Y. Wang, S.T. Ko, K.M. Chung, R.K. Chen, J. Luo, Scr. Mater. 181 (2020) 76-81. [48] F. Li, L. Zhou, J.X. Liu, Y.C. Liang, G.J. Zhang, J. Adv. Ceram. 8 (2019) 576-582. [49] C. Gatzen, D.E. Mack, O. Guillon, R. Vaen, Coatings 9 (2019) 609. [50] D.G. Cahill, S.K. Watson, R.O. Pohl, Phys. Rev. B 46 (1992) 6131-6140. [51] O.L. Anderson, J. Phys. Chem. Solids 24 (1963) 909-917. [52] M.T. Agne, R. Hanus, G.J. Snyder, Energy Environ. Sci. 11 (2018) 609-616. [53] M.B. Bebek, C.M. Stanley, T.M. Gibbons, S.K. Estreicher, Sci. Rep. 6 (2016) 32150. [54] E.S. Toberer, A. Zevalkink, G.J. Snyder, J. Mater. Chem. 21 (2011) 15843-15852. [55] C. Wan, Z. Qu, A. Du, W. Pan, Acta Mater. 57 (2009) 4782-4789. [56] C. Wan, Z. Wei, Y. Wang, Z. Qu, A. Du, R. Wu, W. Pan, Acta Mater. 58 (2010) 6166-6172. [57] A.M. Limarga, S. Shian, R.M. Leckie, C.G. Levi, D.R. Clarke, J. Eur. Ceram.Soc. 34 (2014) 3085-3094. [58] C.L. Wan, W. Pan, Q. Xu, Y.X. Qin, J.D. Wang, Z.X. Qu, M.H. Fang, Phys. Rev. B 74 (2006) 144109. [59] L. Chen, M. Hu, X. Zheng, J. Feng, Acta Mater. 251 (2023) 118870. [60] G.A. Slack, Phys. Rev. 126 (1962) 427-441. [61] B. Abeles, Phys. Rev. 131 (1963) 1906-1911. [62] P.G. Klemens, Proc. Phys. Soc. 68 (1955) 1113-1128. [63] J. Callaway, Phys. Rev. 113 (1959) 1046-1051. [64] G. Grimvall, Amsterdam, 1999. [65] J. Callaway, H.C. Baeyer, Phys. Rev. 120 (1960) 1149-1154. [66] P.G. Klemens, Phys. B-Condens. Matter 263 (1999) 102-104. [67] M.R. Winter, D.R. Clarke, Acta Mater. 54 (2006) 5051-5059. [68] J.L. Braun, C.M. Rost, M. Lim, A. Giri, D. Olson, G.N. Kotsonis, G. Stan, D. Bren-ner, J.Maria, P. Hopkins, Adv. Mater. 30 (2018) 1805004. |
[1] | Yong Fan, Jinfeng Nie, Zhigang Ding, Yujing Zhang, Xiang Chen, Wei Liu, Sen Yang, Sida Liu, Xiangfa Liu, Yonghao Zhao. A facile high-efficiency preparation strategy for Al-containing multi-component boride microcrystals with superior comprehensive performance [J]. J. Mater. Sci. Technol., 2025, 204(0): 190-203. |
[2] | Bin Zhang, Rongxin Sun, Pan Ying, Song Zhao, Yitong Zou, Lei Sun, Zihe Li, Yufei Gao, Mengdong Ma, Lingyu Liu, Chao Liu, Bo Xu. Microstructure and mechanical properties of high-pressure sintered B6O-SiC nanocomposites [J]. J. Mater. Sci. Technol., 2025, 204(0): 238-244. |
[3] | Tao Wen, Zhicheng Li, Jianying Wang, Yimou Luo, Feipeng Yang, Zhilin Liu, Dong Qiu, Hailin Yang, Shouxun Ji. From crack-prone to crack-free: Eliminating cracks in additively manufacturing of high-strength Mg2Si-modified Al-Mg-Si alloys [J]. J. Mater. Sci. Technol., 2025, 204(0): 276-291. |
[4] | Siyuan Yang, Ting Zhou, Long Hou, Xiangyu Li, Jizhou Ci, Shiwei Lu, Jiantao Wang, Zhipeng Long, Xing Yu, Yves Fautrelle, Zongbin Li, Zhongming Ren, Xi Li. Effect of Ni doping on mechanical properties and phase transformation in Co-V-Ga high-temperature shape memory alloys [J]. J. Mater. Sci. Technol., 2024, 193(0): 244-252. |
[5] | San-xi Deng, Zhen-zhen Liu, Guang-jun Zeng, Hui Xiang, Peng-cheng Ma, Jia-ming Yin, Li Kang, Si-han Wen, Jin-feng Li, Dan-yang Liu. The precipitation evolution and mechanical properties of an Al-Cu-Li-Mg alloy during natural aging [J]. J. Mater. Sci. Technol., 2024, 192(0): 42-53. |
[6] | Fucheng Qiu, Tuo Cheng, Yuchao Song, Orest M. Ivasishin, Dmytro G. Savvakin, Guangyu Ma, Huiyan Xu. Achieving superior performance in powder-metallurgy near-β titanium alloy by combining hot rolling and rapid heat treatment followed by aging [J]. J. Mater. Sci. Technol., 2024, 171(0): 24-36. |
[7] | Yu Fu, Wenlong Xiao, Jian Rong, Lei Ren, Huabei Peng, Yuhua Wen, Xinqing Zhao, Chaoli Ma. Achieving large near-linear elasticity, low modulus, and high strength in a metastable β-Ti alloy by mild cold rolling [J]. J. Mater. Sci. Technol., 2024, 189(0): 1-12. |
[8] | Ziyuan Zhao, Daoxiu Li, Xirui Yan, Yan Chen, Zhe Jia, Dongqing Zhang, Mengxia Han, Xu Wang, Guiliang Liu, Xiangfa Liu, Sida Liu. Insights into the dual effects of Ti on the grain refinement and mechanical properties of hypoeutectic Al-Si alloys [J]. J. Mater. Sci. Technol., 2024, 189(0): 44-59. |
[9] | Wei Liu, Biao Chen, Liqing Xu, Dongyang Wang, Changsheng Xiang, Xiangdong Ding, Yu Xiao. Origin of low lattice thermal conductivity in promising ternary PbmBi2S3+m (m = 1-10) thermoelectric materials [J]. J. Mater. Sci. Technol., 2024, 198(0): 12-19. |
[10] | M.S. Moyle, N. Haghdadi, V. Luzin, F. Salvemini, X.Z. Liao, S.P. Ringer, S. Primig. Correlation of microstructure, mechanical properties, and residual stress of 17-4 PH stainless steel fabricated by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2024, 198(0): 83-97. |
[11] | Yali Dong, Huitao Yu, Yiyu Feng, Wei Feng. Structure, properties and applications of multi-functional thermally conductive polymer composites [J]. J. Mater. Sci. Technol., 2024, 200(0): 141-161. |
[12] | Yihan Wang, Meiyuan Jiao, Yuan Wu, Xiongjun Liu, Hui Wang, Suihe Jiang, Xiaobin Zhang, Zhaoping Lu. Enhancing properties of high-entropy alloys via manipulation of local chemical ordering [J]. J. Mater. Sci. Technol., 2024, 180(0): 23-31. |
[13] | Bin Zhang, Yunxia Sun, Tuo Liang, Yunzhen Li, Tian Li, Jingchao Wang, Ruiru Cai, Changlin Yang. Simultaneously enhancing the strength and ductility of as-extruded AlN/AZ91 composites via nano-precipitation and pyramidal slip [J]. J. Mater. Sci. Technol., 2024, 172(0): 240-254. |
[14] | Chuan Guo, Zhen Xu, Gan Li, Jingchen Wang, Xiaogang Hu, Ying Li, Xiaohan Chen, Hui Liu, Le Cheng, Shiyu Zhong, Qiang Zhu, Jian Lu. Printability, microstructures and mechanical properties of a novel Co-based superalloy fabricated via laser powder bed fusion [J]. J. Mater. Sci. Technol., 2024, 189(0): 96-109. |
[15] | Jijun Xin, Hengcheng Zhang, Bingkun Lyu, Panyi Liang, Mebrouka Boubeche, Fuzhi Shen, Wei Wang, Wentao Sun, Li Shi, Ruinan Ma, Xinran Shan, Chuanjun Huang, Laifeng Li. Mechanical performance and deformation mechanisms of ultrastrong yield strength Fe-Cr-Ni-Mn-N austenitic stainless steel at 4.2 Kelvin [J]. J. Mater. Sci. Technol., 2024, 189(0): 191-202. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||