J. Mater. Sci. Technol. ›› 2023, Vol. 162: 203-226.DOI: 10.1016/j.jmst.2023.03.058
• Review Article • Previous Articles Next Articles
Changrui Fenga, Meng Chena, Ziyuan Yanga, Zhengkun Xiec, Xiumin Lid, Shasha Lie, Abuliti Abudulaa,*, Guoqing Guana,b,**
Received:
2023-02-02
Revised:
2023-03-13
Accepted:
2023-03-21
Published:
2023-11-01
Online:
2023-05-19
Contact:
**Energy Conversion Engineering Laboratory, Institute of Regional Innovation, Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan. E-mail addresses: abuliti@hirosaki-u.ac.jp (A. Abudula),*guan@hirosaki-u.ac.jp (G. Guan) .
Changrui Feng, Meng Chen, Ziyuan Yang, Zhengkun Xie, Xiumin Li, Shasha Li, Abuliti Abudula, Guoqing Guan. Electrocatalytic seawater splitting for hydrogen production: Recent progress and future prospects[J]. J. Mater. Sci. Technol., 2023, 162: 203-226.
[1] H.B. Gray, Nat. Chem., 1(2009), p. 7 [2] J. Zhu, L. Hu, P. Zhao, L.Y.S.Lee, K.-Y. Wong, Chem. Rev., 2(2020), pp. 851-918 [3] S. Chu, A. Majumdar, Nature, 488(2012), pp. 294-303 [4] W. Liu, T. Shi, Z. Feng, J. Colloid Interface Sci., 630(2023), pp. 888-899 [5] T. Bacquart, K. Arrhenius, S. Persijn, A. Rojo, F. Aupretre, B. Gozlan, N. Moore, A. Morris, A. Fischer, A. Murugan, S. Bartlett, G. Doucet, F. Laridant, E. Gernot, T.E. Fernandez, C. Gomez, M. Carre, G. De Reals, F. Haloua, J. Power Sources, 444 (2019), Article 227170 [6] F.S. Liu, T.P. Wang, J.J. Li, T. Wei, Z.M. Ye, D.H. Dong, B. Chen, Y.H. Ling, Z.P. Shao, Chem. Eng. J., 434 (2022), Article 134699 [7] J. Qiao, L. Kong, S. Xu, K. Lin, W. He, M. Ni, Q. Ruan, P. Zhang, Y. Liu, W. Zhang, L. Pan, Z. Sun, Energy Stor. Mater., 43(2021), pp. 509-530 [8] T. Nguyen, Z. Abdin, T. Holm, W. Merida, Energy Convers. Manag., 200 (2019), Article 112108 [9] J.Y. Sui, Z.N. Chen, C. Wang, Y.Y. Wang, J.H. Liu, W.J. Li, Appl. Energy, 276 (2020), Article 115409 [10] J.G. Yao, M. Kraussler, F. Benedikt, H. Hofbauer, Energy Convers. Manag., 145(2017), pp. 278-292 [11] C. Wang, H. Xu, H. Shang, L. Jin, C. Chen, Y. Wang, M. Yuan, Y. Du, Inorg. Chem., 59(2020), pp. 3321-3329 [12] Y. Liu, G. Yu, G.-D. Li, Y.Sun, T. Asefa, W. Chen, X. Zou, Angew. Chem. Int. Ed., 54(2015), pp. 10752-10757 [13] C. Wang, H. Shang, Y. Wang, J. Li, S. Guo, J. Guo, Y. Du, Nanoscale, 13(2021), pp. 7279-7284 [14] B. Zhang, C. Zhu, Z. Wu, E. Stavitski, Y.H. Lui, T.-H. Kim, H.Liu, L. Huang, X. Luan, L. Zhou, K. Jiang, W. Huang, S. Hu, H. Wang, J.S. Francisco, Nano Lett., 20(2020), pp. 136-144 [15] H. Wu, S. Lu, B. Yang, Acc. Chem. Res., 3(2022), pp. 319-330 [16] Y. Liu, W. Li, H. Wu, S. Lu, Acta Phys. Chim. Sin., 37 (2021), Article 2009082 [17] Ursua, L.M. Gandia, P. Sanchis, Proc. IEEE, 100(2012), pp. 410-426 [18] Z. Angeles-Olvera, A. Crespo-Yapur, O. Rodriguez, J.L.Cholula-Diaz, L.M. Martinez, M. Videa, Energies, 15(2022), p. 1609 [19] Z. Feng, T. Shi, W. Liu, W. Zhang, H. Zhang, Int. J. Energy Res., 46(2022), pp. 15938-15947 [20] H.X. He, M.W. Yin, A.Q. Chen, J.Q. Liu, X.M. Xie, Z.H. Yang, Water, 10(2018), p. 1289 [21] D.D. Zhang, J.Q. Shen, F.H. Sun, Water Resour. Manag., 36(2022), pp. 1553-1569 [22] K. Makanda, S. Nzama, T. Kanyerere, Water, 14(2022), p. 3153 [23] W. Wang, D.S. Tang, M. Pilgrim, J.N. Liu, Water, 8(2016), p. 2 [24] M.M. Ayyub, M. Chhetri, U. Gupta, A. Roy, C.N.R.Rao, Chem. Eur. J., 24(2018), pp. 18455-18462 [25] Y. Kuang, M.J. Kenney, Y.T. Meng, W.H. Hung, Y.J. Liu, J.E. Huang, R. Prasanna, P.S. Li, Y.P. Li, L. Wang, M.C. Lin, M.D.McGehee, X.M. Sun, H.J. Dai, Proc. Natl. Acad. Sci. U. S. A., 116(2019), pp. 6624-6629 [26] X. Xiao, L.J. Yang, W.P. Sun, Y. Chen, H. Yu, K.K. Li, B.H. Jia, L. Zhang, T.Y. Ma, Small, 18 (2022), Article 2105830 [27] J.N. Zhang, S. Cao, W.P. Hu, L.Y. Piao, Prog. Chem., 32(2020), pp. 1376-1385 [28] L. Bigiani, D. Barreca, A. Gasparotto, T. Andreu, J. Verbeeck, C. Sada, E. Modin, O.I. Lebedev, J.R. Morante, C. Maccato, Appl. Catal. B, 284 (2021), Article 119684 [29] X. Niu, Q. Tang, B. He, P. Yang, Electrochim. Acta, 208(2016), pp. 180-187 [30] Y. Liu, X. Hu, B. Huang, Z. Xie, ACS Sustain, Chem. Eng., 7(2019), pp. 18835-18843 [31] Y.-Y. Ma, C.-X. Wu, X.-J. Feng, H.-Q. Tan, L.-K. Yan, Y. Liu, Z.-H. Kang, E.-B. Wang, Y.-G. Li, Energy Environ. Sci., 10(2017), pp. 788-798 [32] F. Dionigi, T. Reier, Z. Pawolek, M. Gliech, P. Strasser, ChemSusChem, 9(2016), pp. 962-972 [33] T.u. Haq, Y. Haik, Small Sci., 2 (2022), Article 2200030 [34] L. Yu, Q. Zhu, S. Song, B. McElhenny, D. Wang, C. Wu, Z. Qin, J. Bao, Y. Yu, S. Chen, Z. Ren, Nat. Commun., 10(2019) 5106-5106 [35] H.J. Song, H. Yoon, B. Ju, D.-Y. Lee, D.-W. Kim, ACS Catal., 10(2020), pp. 702-709 [36] J. Liu, S. Duan, H. Shi, T. Wang, X. Yang, Y. Huang, G. Wu, Q. Li, Angew. Chem. Int. Ed., 61 (2022), Article e202210753 [37] J. Li, J. Sun, Z. Li, X. Meng, Int. J. Hydrog. Energy, 47(2022), pp. 29685-29697 [38] S. Jiang, Y. Liu, H. Qiu, C. Su, Z. Shao, Catalysts, 12(2022), p. 261 [39] H.Y. Wang, C.C. Weng, J.T. Ren, Z.Y. Yuan, Front. Chem. Sci. Eng., 15(2021), pp. 1408-1426 [40] S.C. Ke, R. Chen, G.H. Chen, X.L. Ma, Energy Fuels, 35(2021), pp. 12948-12956 [41] C. Wang, H. Shang, L. Jin, H. Xu, Y. Du, Nanoscale, 13(2021), pp. 7897-7912 [42] S. Dresp, F. Dionigi, M. Klingenhof, P. Strasser, ACS Energy Lett., 4(2019), pp. 933-942 [43] S. Khatun, H. Hirani, P. Roy, J. Mater. Chem.A, 9(2021), pp. 74-86 [44] F. Dingenen, S.W. Verbruggen, Renew. Sust. Energ. Rev., 142 (2021), Article 110866 [45] Q. Lu, G.S. Hutchings, W. Yu, Y. Zhou, R.V. Forest, R. Tao, J. Rosen, B.T. Yonemoto, Z. Cao, H. Zheng, J.Q. Xiao, F. Jiao, J.G. Chen, Nat. Commun., 6(2015), p. 6567 [46] S. Gupta, M.K. Patel, A. Miotello, N. Patel, Adv. Func. Mater., 30 (2020), Article 1906481 [47] D.Y. Chung, S.W. Jun, G. Yoon, H. Kim, J.M. Yoo, K.-S. Lee, T.Kim, H. Shin, A.K. Sinha, S.G. Kwon, K. Kang, T. Hyeon, Y.E. Sung, J. Am. Chem. Soc., 139(2017), pp. 6669-6674 [48] X. Cheng, Y. Li, L. Zheng, Y. Yan, Y. Zhang, G. Chen, S. Sun, J. Zhang, Energy Environ. Sci., 10(2017), pp. 2450-2458 [49] V. Ramalingam, P. Varadhan, H.C. Fu, H. Kim, D. Zhang, S. Chen, L. Song, D. Ma, Y. Wang, H.N. Alshareef, J.H. He, Adv. Mater., 31 (2019), Article 1903841 [50] L. Zhang, Y. Yang, M.A. Ziaee, K. Lu, R. Wang, ACS Appl. Mater. Interfaces, 10(2018), pp. 9460-9467 [51] H. Zhu, G. Gao, M. Du, J. Zhou, K. Wang, W. Wu, X. Chen, Y. Li, P. Ma, W. Dong, F. Duan, M. Chen, G. Wu, J. Wu, H. Yang, S. Guo, Adv. Mater., 30 (2018), Article 1707301 [52] J. Song, C. Wei, Z.F. Huang, C. Liu, L. Zeng, X. Wang, Z.J. Xu, Chem. Soc. Rev., 49(2020), pp. 2196-2214 [53] N. Zhang, Y. Chai, Energy Environ. Sci., 14(2021), pp. 4647-4671 [54] H. Wu, Q. Huang, Y. Shi, J. Chang, S. Lu, Nano Res. (2023), 10.1007/s12274-023-5539-8 [55] S. Yang, T. Zhang, G. Li, L. Yang, J.Y. Lee, Energy Stor. Mater., 6(2017), pp. 140-148 [56] L. Yang, Z. Liu, S. Zhu, L. Feng, W. Xing, Mater. Today Phys., 16 (2021), Article 100292 [57] Z.P. Wu, X.F. Lu, S.Q. Zang, X.W. Lou, Adv. Funct. Mater., 30 (2020), Article 1910274 [58] Y. Song, X. Zhang, Y. Zhou, Q. Jiang, F. Guan, H. Lv, G. Wang, X. Bao, Energy Stor. Mater., 13(2018), pp. 207-214 [59] X.M. Liu, X.Y. Cui, K. Dastafkan, H.F. Wang, C. Tang, C. Zhao, A.B. Chen, C.X. He, M.H. Han, Q. Zhang, J. Energy Chem., 53(2021), pp. 290-302 [60] W.H. Hung, B.Y. Xue, T.M. Lin, S.Y. Lu, I.Y. Tsao, Mater. Today Energy, 19 (2021), Article 100575 [61] B. Cui, Z. Hu, C. Liu, S. Liu, F. Chen, S. Hu, J. Zhang, W. Zhou, Y. Deng, Z. Qin, Z. Wu, Y. Chen, L. Cui, W. Hu, Nano Res., 14(2021), pp. 1149-1155 [62] K.S. Exner, J. Anton, T. Jacob, H. Over, Angew. Chem. Int. Ed., 53(2014), pp. 11032-11035 [63] K.S. Exner, J. Anton, T. Jacob, H. Over, Angew. Chem. Int. Ed., 55(2016), pp. 7501-7504 [64] S. Anantharaj, S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, S. Kundu, ACS Catal., 6(2016), pp. 8069-8097 [65] Y. Shi, B. Zhang, Chem. Soc. Rev., 45(2016), pp. 1529-1541 [66] Y. Guo, T. Park, J.W. Yi, J. Henzie, J. Kim, Z. Wang, B. Jiang, Y. Bando, Y. Sugahara, J. Tang, Y. Yamauchi, Adv. Mater., 31 (2019), Article 1807134 [67] J.O.M.Bockris, E.C. Potter, J. Electrochem. Soc., 99(1952) 169-169 [68] B.E. Conway, B.V. Tilak, Electrochim. Acta, 47(2002), pp. 3571-3594 [69] X. Li, X. Hao, A. Abudula, G. Guan, J. Mater. Chem.A, 4(2016), pp. 11973-12000 [70] T. Shinagawa, A.T.Garcia-Esparza, K.Takanabe, Sci. Rep., 5(2015) 13801-13801 [71] C. Yu, Z. Liu, X. Han, H. Huang, C. Zhao, J. Yang, J. Qiu, Carbon, 110(2016), pp. 1-7 [72] C. Wei, S. Sun, D. Mandler, X. Wang, S.Z. Qiao, Z.J. Xu, Chem. Soc. Rev., 48(2019), pp. 2518-2534 [73] C.C.L.McCrory, S.Jung, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc., 135(2013), pp. 16977-16987 [74] L. Tian, Z. Li, M. Song, J. Li, Nanoscale, 13(2021), pp. 12088-12101 [75] Y.J. Li, Y.J. Sun, Y.N. Qin, W.Y. Zhang, L. Wang, M.C. Luo, H. Yang, S.J. Guo, Adv. Energy Mater., 10 (2020), Article 1903120 [76] L. Li, B. Wang, G. Zhang, G. Yang, T. Yang, S. Yang, S. Yang, Adv. Energy Mater., 10 (2020), Article 2001600 [77] M. Sarno, E. Ponticorvo, D. Scarpa, Electrochem. Commun., 111 (2020), Article 106647 [78] Y. Liu, H. Huang, X. Ding, B. Huang, Z. Xie, FlatChem, 30 (2021), Article 100302 [79] T.U. Haq, M. Pasha, Y. Tong, S.A. Mansour, Y. Haik, Appl. Catal. B, 301 (2022), Article 120836 [80] H. Li, Q. Tang, B. He, P. Yang, J. Mater. Chem.A, 4(2016), pp. 6513-6520 [81] X. Jiang, Z. Dong, J. Wang, N. Zhang, G.R. Xu, W. Zhang, J. Lai, Z. Li, L. Wang, J. Mater. Chem.C, 9(2021), pp. 8314-8322 [82] R. Ding, T. Yan, Y. Wang, Y. Long, G. Fan, Green Chem., 23(2021), pp. 4551-4559 [83] N. Nie, D. Zhang, Z. Wang, S. Ge, Y. Gu, B. Yang, J. Lai, L. Wang, Appl. Catal. B, 322 (2023), Article 122100 [84] L. Wu, G. Yang, Z. Li, Y. Xiao, J. Qian, Q. Zhang, J. Huang, RSC Adv., 10(2020), pp. 44933-44945 [85] F. Golgovici, A. Pumnea, A. Petica, A.C. Manea, O. Brincoveanu, M. Enachescu, L. Anicai, Chem. Zvesti, 72(2018), pp. 1889-1903 [86] Y. Zhang, P. Li, X. Yang, W. Fa, S. Ge, J. Alloys Compd., 732(2018), pp. 248-256 [87] J. Zheng, Electrochim. Acta, 247(2017), p. 381 [88] C. Ros, S. Murcia-López, X. Garcia, M. Rosado, J. Arbiol, J. Llorca, J.R. Morante, ChemSusChem, 14(2021), pp. 2872-2881 [89] L. Wen, Y. Sun, T. Zhang, Y. Bai, X. Li, X. Lyu, W. Cai, Y. Li, Nanotechnology, 29 (2018), Article 335403 [90] S. Yuan, X. Duan, J. Liu, Y. Ye, F. Lv, T. Liu, Q. Wang, X. Zhang, Energy Stor. Mater., 42(2021), pp. 317-369 [91] R.L. Zhang, J.J. Feng, Y.Q. Yao, K.M. Fang, L. Zhang, Z.Z. Yin, A.J. Wang, Appl. Surf. Sci., 548 (2021), Article 149280 [92] W. Hao, J. Fan, X. Xu, Y. Zhang, H. Lv, S. Wang, S. Deng, S. Weng, Y. Guo, Dalton Trans., 50(2021), pp. 13312-13319 [93] K. Xiang, Z. Song, D. Wu, X. Deng, X. Wang, W. You, Z. Peng, L. Wang, J.L. Luo, X.Z. Fu, J. Mater. Chem.A, 9(2021), pp. 6316-6324 [94] A.A.El-Moneim, N.Kumagai, K. Asami, K. Hashimoto, Scr. Mater., 44(2001), pp. 1659-1662 [95] W.H. Huang, C.Y. Lin, Faraday Discuss, 215(2019), pp. 205-215 [96] A.A.El-Moneim, J.Bhattarai, Z. Kato, K. Izumiya, N. Kumagai, K. Hashimoto, ECS Trans., 25(2010), pp. 127-137 [97] Z. Lei, J.M. Lee, G. Singh, C.I. Sathish, X. Chu, A.a.H. Al-Muhtaseb, A.Vinu, J. Yi, Energy Stor. Mater., 36(2021), pp. 514-550 [98] X. Lu, J. Pan, E. Lovell, T.H. Tan, Y.H. Ng, R. Amal, Energy Environ. Sci., 11(2018), pp. 1898-1910 [99] H.Y. Song, N.B. Kondrikov, V.G. Kuryavy, Y.H. Kim, Y.S. Kang, J. Ind. Eng.Chem., 13(2007), pp. 545-551 [100] J.E. Bennett, Int. J. Hydrog. Energy, 5(1980), pp. 401-408 [101] J.G. Vos, T.A. Wezendonk, A.W. Jeremiasse, M.T.M.Koper, J. Am. Chem. Soc., 140(2018), pp. 10270-10281 [102] B. Debnath, S. Parvin, H. Dixit, S. Bhattacharyya, ChemSusChem, 13(2020), pp. 3875-3886 [103] H. Jin, X. Wang, C. Tang, A. Vasileff, L. Li, A. Slattery, S.Z. Qiao, Adv. Mater., 33 (2021), Article 2007508 [104] L. Yu, L. Wu, S. Song, B. McElhenny, F. Zhang, S. Chen, Z. Ren, ACS Energy Lett., 5(2020), pp. 2681-2689 [105] Y. Zhao, B. Jin, A. Vasileff, Y. Jiao, S.Z. Qiao, J. Mater. Chem.A, 7(2019), pp. 8117-8121 [106] Badreldin, A. Nabeeh, Z.K. Ghouri, J. Abed, N. Wang, Y. Wubulikasimu, K. Youssef, D. Kumar, M.K. Stodolny, K. Elsaid, E.H. Sargent, A. Abdel-wahab, ACS Appl. Mater. Interfaces, 13(2021), pp. 53702-53716 [107] W. Zang, T. Sun, T. Yang, S. Xi, M. Waqar, Z. Kou, Z. Lyu, Y.P. Feng, J. Wang, S.J. Pennycook, Adv. Mater., 33 (2021), Article 2003846 [108] B. Wang, M. Lu, D. Chen, Q. Zhang, W. Wang, Y. Kang, Z. Fang, G. Pang, S. Feng, J. Mater. Chem.A, 9(2021), pp. 13562-13569 [109] X. Wang, X. Han, R.F. Du, C.C. Xing, X.Q. Qi, Z.F. Liang, P. Guardia, J. Arbiol, A. Cabot, J.S. Li, ACS Appl. Mater. Interfaces, 14(2022), pp. 41924-41933 [110] H. Jin, X. Liu, A. Vasileff, Y. Jiao, Y. Zhao, Y. Zheng, S.Z. Qiao, ACS Nano, 12(2018), pp. 12761-12769 [111] J. Miao, Z. Lang, X. Zhang, W. Kong, O. Peng, Y. Yang, S. Wang, J. Cheng, T. He, A. Amini, Q. Wu, Z. Zheng, Z. Tang, C. Cheng, Adv. Funct. Mater., 29 (2019), Article 1805893 [112] W. Song, M. Xu, X. Teng, Y. Niu, S. Gong, X. Liu, X. He, Z. Chen, Nanoscale, 13(2021), pp. 1680-1688 [113] T. Marimuthu, R. Yuvakkumar, P. Senthil Kumar, G. Ravi, X. Xu, D. Velauthapillai, D.V. Dai, Int. J. Hydrog. Energy, 47(2022), pp. 30819-30829 [114] B. Zhang, W. Xu, S. Liu, X. Chen, T. Ma, G. Wang, Z. Lu, J. Sun, J. Power Sources, 506 (2021), Article 230235 [115] D. Mukherjee, P. Muthu Austeria, S. Sampath, ACS Appl. Energy Mater., 1(2018), pp. 220-231 [116] P. Karfa, K.C. Majhi, R. Madhuri, Int. J. Hydrog. Energy, 44(2019), pp. 24628-24641 [117] M. Zhao, M. Yang, W. Huang, W. Liao, H. Bian, D. Chen, L. Wang, J. Tang, C. Liu, ChemCatChem, 13(2021), pp. 2138-2144 [118] L. Zeng, Z. Liu, K. Sun, Y. Chen, J. Zhao, Y. Chen, Y. Pan, Y. Lu, Y. Liu, C. Liu, J. Mater. Chem.A, 7(2019), pp. 25628-25640 [119] Y. Li, S.W. Zuo, Q.H. Li, H.W. Huang, X. Wu, J. Zhang, H.B. Zhang, J. Zhang, Appl. Catal. B, 318 (2022), Article 121832 [120] Y. Zhao, B. Jin, Y. Zheng, H. Jin, Y. Jiao, S.Z. Qiao, Adv. Energy Mater., 8 (2018), Article 1801926 [121] Z. Feng, E. Wang, S. Huang, J. Liu, Nanoscale, 12(2020), pp. 4426-4434 [122] J. Chang, G. Wang, Z. Yang, B. Li, Q. Wang, R. Kuliiev, N. Orlovskaya, M. Gu, Y. Du, G. Wang, Y. Yang, Adv. Mater., 33 (2021), Article 2101425 [123] C. Wang, M. Zhu, Z. Cao, P. Zhu, Y. Cao, X. Xu, C. Xu, Z. Yin, Appl. Catal. B, 291 (2021), Article 120071 [124] Y. Li, X. Wu, J. Wang, H. Wei, S. Zhang, S. Zhu, Z. Li, S. Wu, H. Jiang, Y. Liang, Electrochim. Acta, 390 (2021), Article 138833 [125] Z. Xiao, Y. Wang, Y.C. Huang, Z. Wei, C.L. Dong, J. Ma, S. Shen, Y. Li, S. Wang, Energy Environ. Sci., 10(2017), pp. 2563-2569 [126] Y.-P. Zhu, T.Z. Ren, Z.Y. Yuan, Catal. Sci. Technol., 5(2015), pp. 4258-4279 [127] L. Chen, J.T. Ren, Z.Y. Yuan, Green Chem., 24 (2022), pp. 713-747, View article [128] X. Li, J. Wang, Adv. Mater. Interfaces, 7 (2020), Article 2000676 [129] H. Zhao, Z.Y. Yuan, Catal. Sci. Technol., 7(2017), pp. 330-347 [130] H. Zhao, Z.-Y. Yuan, ChemSusChem, 14(2021), pp. 130-149 [131] Y. Wang, B. Kong, D. Zhao, H. Wang, C. Selomulya, Nano Today, 15(2017), pp. 26-55 [132] F. Yu, H. Zhou, Y. Huang, J. Sun, F. Qin, J. Bao, W.A. Goddard, S. Chen, Z. Ren, Nat. Commun., 9(2018), p. 2551 [133] S. Wang, L. Zhang, X. Li, C. Li, R. Zhang, Y. Zhang, H. Zhu, Nano Res., 10(2017), pp. 415-425 [134] H. Yu, J. Li, G. Gao, G. Zhu, X. Wang, T. Lu, L. Pan, J. Colloid Interface Sci., 565(2020), pp. 513-522 [135] L. Yan, B. Zhang, J. Zhu, Y. Li, P. Tsiakaras, P.Kang Shen, Appl. Catal. B, 265 (2020), Article 118555 [136] M. Wang, Y. Tuo, X. Li, Q. Hua, F. Du, L. Jiang, ACS Sustain, Chem. Eng., 7(2019), pp. 12419-12427 [137] N. Wang, X. He, Y. Chen, B. Sun, X. Xie, S.W. Koh, L. He, M. Yao, J. Porous Mater., 28(2021), pp. 763-771 [138] D.Y. Li, L.L. Liao, H.Q. Zhou, Y. Zhao, F.M. Cai, J.S. Zeng, F. Liu, H. Wu, D.S. Tang, F. Yu, Mater. Today Phys., 16 (2021), Article 100314 [139] D. Liu, H. Ai, M. Chen, P. Zhou, B. Li, D. Liu, X. Du, K.H. Lo, K.W. Ng, S.P. Wang, S. Chen, G. Xing, J. Hu, H. Pan, Small, 17 (2021), Article 2007557 [140] Kumar, V.Q. Bui, J. Lee, A.R. Jadhav, Y. Hwang, M.G. Kim, Y. Kawazoe, H. Lee, ACS Energy Lett., 6(2021), pp. 354-363 [141] Y. Lin, K. Sun, X. Chen, C. Chen, Y. Pan, X. Li, J. Zhang, J. Energy Chem., 55(2021), pp. 92-101 [142] S. Li, Y. Wu, X. Du, Y. Fang, L. Wang, J. Yao, I. Krucinska, M. Zhang, J. Electroanal. Chem., 888 (2021), Article 115201 [143] X.F. Sun, P. Yang, S.H. Wang, J. Hu, P. Chen, H.L. Xing, W.K. Zhu, Int. J. Hydrog. Energy, 47(2022), pp. 28495-28504 [144] Q. Lv, J. Han, X. Tan, W. Wang, L. Cao, B. Dong, ACS Appl. Energy Mater., 2(2019), pp. 3910-3917 [145] L. Wu, L. Yu, F. Zhang, B. McElhenny, D. Luo, A. Karim, S. Chen, Z. Ren, Adv. Funct. Mater., 31 (2021), Article 2006484 [146] S. Wang, P. Yang, X. Sun, H. Xing, J. Hu, P. Chen, Z. Cui, W. Zhu, Z. Ma, Appl. Catal. B, 297 (2021), Article 120386 [147] J.Y. Liu, X. Liu, H. Shi, J.H. Luo, L. Wang, J.S. Liang, S.Z. Li, L.M. Yang, T.Y. Wang, Y.H. Huang, Q. Li, Appl. Catal. B, 302 (2022), Article 120862 [148] X. Duan, D.G. Evans, Layered Double Hydroxides, Springer, Berlin, Heidelberg (2006) [149] D. Zhou, P. Li, X. Lin, A. McKinley, Y. Kuang, W. Liu, W.F. Lin, X. Sun, X. Duan, Chem. Soc. Rev., 50(2021), pp. 8790-8817 [150] S. Duan, Z. Liu, H. Zhuo, T. Wang, J. Liu, L. Wang, J. Liang, J. Han, Y. Huang, Q. Li, Nanoscale, 12(2020), pp. 21743-21749 [151] Q. Tu, W. Liu, M. Jiang, W. Wang, Q. Kang, P. Wang, W. Zhou, F. Zhou, ACS Appl. Energy Mater., 4(2021), pp. 4630-4637 [152] S.Y. Jung, S. Kang, K.M. Kim, S. Mhin, J.C. Kim, S.J. Kim, E. Enkhtuvshin, S. Choi, H.S. Han, Appl. Surf. Sci., 568 (2021), Article 150965 [153] E. Enkhtuvshin, K.M. Kim, Y.K. Kim, S. Mihn, S.J. Kim, S.Y. Jung, N.T.Thu Thao, G. Ali, M. Akbar, K.Y. Chung, K.H. Chae, S. Kang, T.W. Lee, H.G. Kim, S. Choi, H.S. Han, J. Mater. Chem. A, 9(2021), pp. 27332-27346 [154] Z.-F. Huang, J. Song, Y. Du, S. Xi, S. Dou, J.M.V. Nsanzimana, C. Wang, Z.J. Xu, X. Wang, Nat. Energy, 4(2019), pp. 329-338 [155] X. Xu, F. Song, X. Hu, Nat. Commun., 7(2016), p. 12324 [156] S. Jin, ACS Energy Lett., 2(2017), pp. 1937-1938 [157] L. Yu, L. Wu, B. McElhenny, S. Song, D. Luo, F. Zhang, Y. Yu, S. Chen, Z. Ren, Energy Environ. Sci., 13(2020), pp. 3439-3445 [158] Y.S. Park, J. Lee, M.J. Jang, J. Yang, J. Jeong, J. Park, Y. Kim, M.H. Seo, Z. Chen, S.M. Choi, J. Mater. Chem.A, 9(2021), pp. 9586-9592 [159] Badreldin, A. Nabeeh, E. Youssef, N. Mubarak, H. ElSayed, R. Mohsen, F. Ahmed, Y. Wubulikasimu, K. Elsaid, A. Abdel-Wahab, ACS Appl.Energy Mater., 4(2021), pp. 6942-6956 [160] Y.H. Chew, B.J. Ng, J.Y. Tang, L.L. Tan, S.P. Chai, Solar RRL, 5 (2021), Article 2100016 [161] P. Cheng, C. Yuan, Q. Zhou, X. Hu, J. Li, X. Lin, X. Wang, M. Jin, L. Shui, X. Gao, R. Notzel, G. Zhou, Z. Zhang, J. Liu, J. Phys. Chem.C, 123(2019), pp. 5833-5839 [162] J. Sun, P. Song, H. Zhou, L. Lang, X. Shen, Y. Liu, X. Cheng, X. Fu, G. Zhu, Appl. Surf. Sci., 567 (2021), Article 150757 [163] Y. Huang, L. Hu, R. Liu, Y. Hu, T. Xiong, W. Qiu, M.S. Balogun, A. Pan, Y. Tong, Appl. Catal. B, 251(2019), pp. 181-194 [164] L. Wu, L. Yu, B. McElhenny, X. Xing, D. Luo, F. Zhang, J. Bao, S. Chen, Z. Ren, Appl. Catal. B, 294 (2021), Article 120256 [165] Y. Wu, Z. Tian, S. Yuan, Z. Qi, Y. Feng, Y. Wang, R. Huang, Y. Zhao, J. Sun, W. Zhao, W. Guo, J. Feng, J. Sun, Chem. Eng. J., 411 (2021), Article 128538 [166] Z. Wang, W. Xu, K. Yu, Y. Feng, Z. Zhu, Nanoscale, 12(2020), pp. 6176-6187 [167] S.T. Senthilkumar, S.O. Park, J. Kim, S.M. Hwang, S.K. Kwak, Y. Kim, J. Mater. Chem.A, 5(2017), pp. 14174-14181 [168] I.S. Filimonenkov, C. Bouillet, G. Kéranguéven, P.A. Simonov, G.A. Tsirlina, E.R. Savinova, Electrochim. Acta, 321 (2019), Article 134657 [169] S. Sharma, B.G. Pollet, J. Power Sources, 208(2012), pp. 96-119 [170] S. Gupta, S. Zhao, X.X. Wang, S. Hwang, S. Karakalos, S.V. Devaguptapu, S. Mukherjee, D. Su, H. Xu, G. Wu, ACS Catal., 7(2017), pp. 8386-8393 [171] N.K. Chaudhari, H. Jin, B. Kim, K. Lee, Nanoscale, 9(2017), pp. 12231-12247 [172] á. Torrinha, S. Morais, Trends Analyt. Chem., 142 (2021), Article 116324 [173] Mishra, N.P. Shetti, S. Basu, K.R. Reddy, T.M. Aminabhavi, ChemElectroChem, 6(2019), pp. 5771-5786 |
[1] | Wenxuan Wang, Wenhao Chi, Zhaoyong Zou, Pengchao Zhang, Kun Wang, Ji Zou, Hang Ping, Jingjing Xie, Weimin Wang, Zhengyi Fu. Bio-inspired high-efficiency photosystem by synergistic effects of core-shell structured Au@CdS nanoparticles and their engineered location on {001} facets of SrTiO3 nanocrystals [J]. J. Mater. Sci. Technol., 2023, 136(0): 159-168. |
[2] | Liming Yang, Tao Yang, Enhui Wang, Xiangtao Yu, Kang Wang, Zhentao Du, Sheng Cao, Kuo-Chih Chou, Xinmei Hou. Bifunctional hierarchical NiCoP@FeNi LDH nanosheet array electrocatalyst for industrial-scale high-current-density water splitting [J]. J. Mater. Sci. Technol., 2023, 159(0): 33-40. |
[3] | Peng Li, Yuanpeng Yao, Wengen Ouyang, Ze Liu, Huayi Yin, Dihua Wang. A stable oxygen evolution splitting electrocatalysts high entropy alloy FeCoNiMnMo in simulated seawater [J]. J. Mater. Sci. Technol., 2023, 138(0): 29-35. |
[4] | Zhao Song, Lingyu Li, Yidi Chen, Xiaoguang Duan, Nanqi Ren. Efficient removal and recovery of Cd2+ from aqueous solutions by capacitive deionization (CDI) method using biochars [J]. J. Mater. Sci. Technol., 2023, 148(0): 10-18. |
[5] | Jinzhou Li, Chao Chen, Zepeng Lv, Wansen Ma, Meng Wang, Qian Li, Jie Dang. Constructing heterostructures of ZIF-67 derived C, N doped Co2P and Ti2VC2Tx MXene for enhanced OER [J]. J. Mater. Sci. Technol., 2023, 145(0): 74-82. |
[6] | Weixin Huang, Zhipeng Li, Chao Wu, Hanjie Zhang, Jie Sun, Qin Li. Delaminating Ti3C2 MXene by blossom of ZnIn2S4 microflowers for noble-metal-free photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2022, 120(0): 89-98. |
[7] | MinJe Kang, GillSang Han, InSun Cho. Photophysical, optical, and photocatalytic hydrogen production properties of layered-type BaNb2-xTaxP2O11 (x = 0, 0.5, 1.0, 1.5, and 2.0) compounds [J]. J. Mater. Sci. Technol., 2022, 98(0): 26-32. |
[8] | Kai Wang, Quanpeng Wang, Kaijia Zhang, Guohong Wang, Hukun Wang. Selective solar-driven CO2 reduction mediated by 2D/2D Bi2O2SiO3/MXene nanosheets heterojunction [J]. J. Mater. Sci. Technol., 2022, 124(0): 202-208. |
[9] | Jing Li, Fan Yang, Yunzhu Du, Xiyang Cai, Qiaodan Hu, Junliang Zhang. Bi0.15Sr0.85Co0.8Fe0.2O3-δ perovskite: A novel bifunctional oxygen electrocatalyst with superior durability in alkaline media [J]. J. Mater. Sci. Technol., 2022, 108(0): 158-163. |
[10] | Guiqing Huang, Wanneng Ye, Chunxiao Lv, Denys S. Butenko, Chen Yang, Gaolian Zhang, Ping Lu, Yan Xu, Shuchao Zhang, Hongwei Wang, Yukun Zhu, Dongjiang Yang. Hierarchical red phosphorus incorporated TiO2 hollow sphere heterojunctions toward superior photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2022, 108(0): 18-25. |
[11] | Peng Zhuo, Han Changcun, Huang Chuyun, Dong Zehua, Ma Xinguo. Preventing surface passivation of transition metal nanoparticles in oxygen electrocatalyst to extend the lifespan of Zn-air battery [J]. J. Mater. Sci. Technol., 2022, 128(0): 205-212. |
[12] | Xiaolin Hu, Tongxin Yang, Zuguang Yang, Zongyang Li, Ronghua Wang, Meng Li, Guangsheng Huang, Bin Jiang, Chaohe Xu, Fusheng Pan. Engineering of Co3O4@Ni2P heterostructure as trifunctional electrocatalysts for rechargeable zinc-air battery and self-powered overall water splitting [J]. J. Mater. Sci. Technol., 2022, 115(0): 19-28. |
[13] | Shicheng Li, Hongyan Liang, Chong Li, Yongchang Liu. Lattice mismatch in Ni3Al-based alloy for efficient oxygen evolution [J]. J. Mater. Sci. Technol., 2022, 106(0): 19-27. |
[14] | Pengfei Zhou, Dong Liu, Yuyun Chen, Mingpeng Chen, Yunxiao Liu, Shi Chen, Chi Tat Kwok, Yuxin Tang, Shuangpeng Wang, Hui Pan. Corrosion engineering boosting bulk Fe50Mn30Co10Cr10 high-entropy alloy as high-efficient alkaline oxygen evolution reaction electrocatalyst [J]. J. Mater. Sci. Technol., 2022, 109(0): 267-275. |
[15] | Jian Huang, Peilin Wang, Peng Li, Huayi Yin, Dihua Wang. Regulating electrolytic Fe0.5CoNiCuZnx high entropy alloy electrodes for oxygen evolution reactions in alkaline solution [J]. J. Mater. Sci. Technol., 2021, 93(0): 110-118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||