J. Mater. Sci. Technol. ›› 2023, Vol. 133: 238-248.DOI: 10.1016/j.jmst.2022.06.018
• Research article • Previous Articles Next Articles
Shuangshuang Li, XinweiTang , Xu Zhao, Shijie Lu, Jiangtao Luo, Zheyuan Chai, Tiantian Ma, Qianqian Lan, Piming Ma, Weifu Dong, Zicheng Wang(), Tianxi Liu(
)
Received:
2022-04-29
Revised:
2022-06-03
Accepted:
2022-06-10
Published:
2022-07-09
Online:
2022-07-09
Contact:
Zicheng Wang,Tianxi Liu
About author:
txliu@jiangnan.edu.cn (T. Liu).Shuangshuang Li, XinweiTang , Xu Zhao, Shijie Lu, Jiangtao Luo, Zheyuan Chai, Tiantian Ma, Qianqian Lan, Piming Ma, Weifu Dong, Zicheng Wang, Tianxi Liu. Hierarchical graphene@MXene composite foam modified with flower-shaped FeS for efficient and broadband electromagnetic absorption[J]. J. Mater. Sci. Technol., 2023, 133: 238-248.
Fig. 1. (a) Preparation process of GN/MXene/FeS foam; SEM images of those foams: (b, f) rGO; (c, g) rGO/MXene; (d, h) rGO/MXene/FeS; (e, i) GN/MXene/FeS (The small picture embedded in the upper left corner is a partial magnification of 5000 times).
Fig. 2. (a) XRD patterns of FeS, rGO, MXene, rGO/MXene, and rGO/MXene/FeS; (b) XPS spectra and (c) hysteresis loops of rGO, rGO/MXene, and rGO/MXene/FeS foam.
Fig. 3. (a) Real parts and (b) imaginary parts of complex permittivity; (c) dielectric loss tangent of the foams; Cole-Cole curves of (d) rGO, (e) rGO/MXene, and (f) rGO/MXenen/FeS foam.
Fig. 5. Microwave absorption mechanisms in rGO/MXene/FeS foam: (a) interfacial polarization; multiple reflection/scattering in (b) foam and (c) FeS clusters; (d) conductive loss; (e) magnetic loss.
Fig. 6. Impedance matching 2D contour maps (|Zin/Z0|) of (a) rGO, (b) rGO/MXene, and (c) rGO/MXene/FeS, and (d) attenuation constant of the corresponding foams.
Fig. 7. 3D reflection loss, the corresponding 2D contour and 2D reflection loss maps of the foams: (a, d, g) rGO; (b, e, h) rGO/MXene; (c, f, i) rGO/MXene/FeS.
Fig. 8. 3D reflection loss, corresponding 2D contour, and 2D reflection loss maps of the foams: (a, e, i) rGMF-10; (b, f, j) rGMF-20; (c, g, k) rGMF-30; (d, h, l) rGMF-40.
Fig. 9. 3D reflection loss, the corresponding 2D contour and 2D reflection loss maps of the foams: (a, e, i) GMF-0; (b, f, j) GMF-200; (c, g, k) GMF-300; (d, h, l) GMF-400.
Empty Cell | Density (mg/cm3) | RLmin (dB) | Thickness (mm) | Range (GHz) | EAB (GHz) | EABmax (GHz) | Refs. |
---|---|---|---|---|---|---|---|
PI-GP1/3-rGO | 63.7 | -32.90 | 4.00 | 8.26-14.48 | 6.22 | 6.22 | [ |
GF/PA | 3.8 | -36.50 | 6.00 | 6.0-12.0 | 6.00 | 8.42 | [ |
NRGO/NiFe2O4 | 10 | -60.60 | 1.50 | 13.40-18.00 | 4.60 | 5.50 | [ |
MXene/polyimide | 12 | -41.80 | 4.00 | 14.50-18.00 | 3.50 | 6.50 | [ |
Co1.29Ni1.71O4/rGO/CF | 16.3 | -53.45 | 3.00 | 10.55-18.00 | 7.45 | 7.45 | [ |
MXene/cellulose | 310 | -43.40 | 2.00 | 9.50-14.00 | 4.50 | 5.15 | [ |
MX/CF/Epoxy | 10-20 | -41.46 | 1.83 | 10.58-15.25 | 4.67 | 4.67 | [ |
Porous graphene | 40-50 | -42.9 | 4.00 | 5.80-7.30 | 1.50 | 5.59 | [ |
Ni/carbon | 100 | -45.00 | 2.00 | 11.40-16.00 | 4.60 | 4.60 | [ |
rGO/MoS2 | 8.4 | -62.92 | 2.27 | 9.0-13.4 | 4.40 | 4.48 | [ |
FeNi@graphene | 13.1 | -39.39 | 2.0 | 11.4-15.8 | 4.40 | 8.40 | [ |
graphene@SiC | 72 | -47.3 | 3 | 8.5-13.2 | 4.70 | 5.40 | [ |
rGO/MXene/FeS | 12.1 | -47.17 | 4.78 | 6.41-12.56 | 6.15 | 6.39 | This work |
rGMF-300 | 11.9 | -50.68 | 4.08 | 6.91-16.57 | 9.66 | 11.20 | This work |
Table 1. MA performance of the porous materials reported recently.
Empty Cell | Density (mg/cm3) | RLmin (dB) | Thickness (mm) | Range (GHz) | EAB (GHz) | EABmax (GHz) | Refs. |
---|---|---|---|---|---|---|---|
PI-GP1/3-rGO | 63.7 | -32.90 | 4.00 | 8.26-14.48 | 6.22 | 6.22 | [ |
GF/PA | 3.8 | -36.50 | 6.00 | 6.0-12.0 | 6.00 | 8.42 | [ |
NRGO/NiFe2O4 | 10 | -60.60 | 1.50 | 13.40-18.00 | 4.60 | 5.50 | [ |
MXene/polyimide | 12 | -41.80 | 4.00 | 14.50-18.00 | 3.50 | 6.50 | [ |
Co1.29Ni1.71O4/rGO/CF | 16.3 | -53.45 | 3.00 | 10.55-18.00 | 7.45 | 7.45 | [ |
MXene/cellulose | 310 | -43.40 | 2.00 | 9.50-14.00 | 4.50 | 5.15 | [ |
MX/CF/Epoxy | 10-20 | -41.46 | 1.83 | 10.58-15.25 | 4.67 | 4.67 | [ |
Porous graphene | 40-50 | -42.9 | 4.00 | 5.80-7.30 | 1.50 | 5.59 | [ |
Ni/carbon | 100 | -45.00 | 2.00 | 11.40-16.00 | 4.60 | 4.60 | [ |
rGO/MoS2 | 8.4 | -62.92 | 2.27 | 9.0-13.4 | 4.40 | 4.48 | [ |
FeNi@graphene | 13.1 | -39.39 | 2.0 | 11.4-15.8 | 4.40 | 8.40 | [ |
graphene@SiC | 72 | -47.3 | 3 | 8.5-13.2 | 4.70 | 5.40 | [ |
rGO/MXene/FeS | 12.1 | -47.17 | 4.78 | 6.41-12.56 | 6.15 | 6.39 | This work |
rGMF-300 | 11.9 | -50.68 | 4.08 | 6.91-16.57 | 9.66 | 11.20 | This work |
[1] | J.J. Zhang, Z.H. Li, X.S. Qi, X. Gong, R. Xie, C.Y. Deng, W. Zhong, Y.W. Du, Com- pos. Part B-Eng. 222 (2021) 109067. |
[2] | L.F. Lyu, F.L. Wang, X. Zhang, J. Qiao, C. Liu, J.R. Liu,Carbon 172 (2021) 4 88-4 96. |
[3] | Y. Wang, X.C. Di, Z. Lu, R.R. Cheng, X.M. Wu, P.H. Gao,Carbon 187 (2022) 404-414. |
[4] |
Q.L. Sun, L. Sun, Y.Y. Cai, W. Ye, S.J. Xu, T. Ji, G.Q. Yuan, Ceram. Int. 45 (2019) 18298-18305.
DOI URL |
[5] |
T.Q. Hou, Z.R. Jia, S.Q. He, Y. Su, X.D. Zhang, B.H. Xu, X.H. Liu, G.L. Wu, J. Colloid Interface Sci. 583 (2021) 321-330.
DOI URL |
[6] |
X.T. Yang, S.G. Fan, Y. Li, Y.Q. Guo, K.P. Ruan, Y.G. Li, S.M. Zhang, J.L. Zhang, J. Kong, J.W. Gu, Compos. Part A Appl. Sci. Manuf. 128 (2020) 105670.
DOI URL |
[7] |
N.N. Wu, B.B. Zhao, J.Y. Liu, Y.L. Li, Y.B. Chen, L. Chen, M. Wang, Z.H. Guo, Adv. Compos. Hybrid Mater. 4 (2021) 707-715.
DOI URL |
[8] | X.C. Di, Y. Wang, Z. Lu, R.R. Cheng, L.Q. Yang, X.M. Wu,Carbon 179 (2021) 566-578. |
[9] |
Y. Hou, L.F. Cheng, Y.N. Zhang, X.Q. Du, Y.J. Zhao, Z.H. Yang, Chem. Eng. J. 404 (2021) 126521.
DOI URL |
[10] | Y.X. Zuo, X.X. Su, X.W. Li, Z.J. Yao, T.T. Yu, J.T. Zhou, J. Li, J. Lu, J. Ding,Carbon 167 (2020) 62-74. |
[11] |
R.R. Cheng, Y. Wang, X.C. Di, Z. Lu, P. Wang, M.L. Ma, J.R. Ye, J. Colloid Interface Sci. 609 (2022) 224-234.
DOI URL |
[12] |
X. Fan, F.C. Wang, Q. Gao, Y. Zhang, F. Huang, R.L. Xiao, J.B. Qin, H. Zhang, X. T. Shi, G.C. Zhang, J. Mater. Sci. Technol. 103 (2022) 177-185.
DOI URL |
[13] | Z.C. Wang, R.B. Wei, J.W. Gu, H. Liu, C.T. Liu, C.J. Luo, J. Kong, Q. Shao, N. Wang, Z.H. Guo, X.B. Liu,Carbon 139 (2018) 1126-1135. |
[14] |
P. Song, B. Liu, C.B. Liang, K.P. Ruan, H. Qiu, Z.L. Ma, Y.Q. Guo, J.W. Gu, Nano Micro Lett. 13 (2021) 91.
DOI URL |
[15] |
Z.C. Wang, R.B. Wei, X.B. Liu, ACS Appl. Mater. Interfaces 9 (2017) 22408-22419.
DOI URL |
[16] | D.W. Xu, S. Yang, P. Chen, Q. Yu, X.H. Xiong, J. Wang,Carbon 146 (2019) 301-312. |
[17] | J.M. Tang, N. Liang, L. Wang, J. Li, G. Tian, D. Zhang, S.H. Feng, H.J. Yue,Carbon 152 (2019) 575-586. |
[18] |
S.S. Li, X.W. Tang, Y.W. Zhang, Q.Q. Lan, Z.W. Hu, L. Li, N. Zhang, P.M. Ma, W.F. Dong, W.W. Tjiu, Z.C. Wang, T.X. Liu, ACS Appl. Mater. Interfaces 14 (2022) 8297-8310.
DOI URL |
[19] | W.W. Gao, N.F. Zhao, T. Yu, J.B. Xi, A.R. Mao, M.Q. Yuan, H. Bai, C. Gao,Carbon 157 (2020) 570-577. |
[20] | H.L. Lv, Y. Li, Z.R. Jia, L.J. Wang, X.Q. Guo, B. Zhao, R. Zhang, Compos. PartB- Eng. 196 (2020) 108122. |
[21] |
B.H. Yuan, H.J. Tao, S.S. Wang, G.Q. Chen, Y.Y. Zhan, Y. Wang, J.J. Zhou, Compos. Commun. 27 (2021) 100858.
DOI URL |
[22] |
Y. Wang, X. Gao, Y.Q. Fu, X.M. Wu, Q.G. Wang, W.Z. Zhang, C.Y. Luo, Compos. Part B-Eng. 169 (2019) 221-228.
DOI |
[23] | L. Pu, S.S. Li, Y.W. Zhang, H.Y. Zhu, W. Fan, P.M. Ma, W.F. Dong, Z.C. Wang, T. X. Liu, J. Mater. Chem. C 9 (2021) 2086-2094. |
[24] |
J.Q. Wang, L. Liu, S.L. Jiao, K.J. Ma, J. Lv, J.J. Yang, Adv. Funct. Mater. 30 (2020) 2002595.
DOI URL |
[25] | G. Fang, C.Y. Liu, Y. Yang, K.S. Peng, Y.F. Cao, T. Jiang, Y.T. Zhang, Y. Zhang, ACS Appl. Mater. Interfaces 13 (2021) 37507-37516. |
[26] | L.Y. Liang, Q.M. Li, X. Yan, Y.Z. Feng, Y.M. Wang, H.B. Zhang, X.P. Zhou, C.T. Liu, C. Y. Shen, X.L. Xie, ACS Nano 15 (2021) 6622-6632. |
[27] | J.R. Ma, X.X. Wang, W.Q. Cao, C. Han, H.J. Yang, J. Yuan, M.S. Cao, Chem. Eng. J. 339 (2018) 4 87-4 98. |
[28] |
S. Huang, L. Wang, Y.C. Li, C.B. Liang, J.L. Zhang, J. Appl. Polym. Sci. 138 (2021) 50649.
DOI URL |
[29] |
Y. Zhang, G.C. Zhang, X.T. Shi, Q. Gao, F. Huang, R.L. Xiao, Compos. Commun. 28 (2021) 100954.
DOI URL |
[30] |
Y.Q. Ma, H.W. Huang, H. Zhou, M. Graham, J. Smith, X.X. Sheng, Y. Chen, L. Zhang, X.Y. Zhang, E. Shchukina, D. Shchukin, J. Mater. Sci. Technol. 95 (2021) 95-104.
DOI URL |
[31] | J.H. Li, J.Y. Li, H. Meng, S.Y. Xie, B.W. Zhang, L.F. Li, H.J. Ma, J.Y. Zhang, M. Yu, J. Mater. Chem. A 2 (2014) 2934-2941. |
[32] |
J.Z. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin, P.A. Lynch, S. Qin, M.K. Han, W.R. Yang, J.Q. Liu, X.G. Wang, Y. Gogotsi, J.M. Razal, Adv. Mater. 32 (2020) 2001093.
DOI URL |
[33] | Z.L. Ma, S.L. Kang, J.Z. Ma, L. Shao, Y.L. Zhang, C. Liu, A.J. Wei, X.L. Xiang, L. F. Wei, J.W. Gu, ACS Nano 14 (2020) 8368-8382. |
[34] | S.W. Cao, Y.J. Zhu, J. Phys. Chem. C 112 (2008) 12149-12156. |
[35] | F. Cao, W. Hu, L. Zhou, W.D. Shi, S.Y. Song, Y.Q. Lei, S. Wang, H.J. Zhang, Dalton Trans. (2009) 9246-9252. |
[36] | L.D. Shi, D.Z. Li, J.L. Yu, H.C. Liu, Y. Zhao, H.L. Xin, Y.M. Lin, C.D. Lin, C.H. Li, C. Z. Zhu, J. Mater. Chem. A 6 (2018) 7967-7976. |
[37] |
T.T. Le, X. Liu, P.J. Xin, Q. Wang, C.Y. Gao, Y. Wu, Y. Jiang, Z.J. Hu, S.S. Huang, Z.W. Chen, J. Mater. Sci. Technol. 74 (2021) 168-175.
DOI URL |
[38] | A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, Y. Gogotsi, C.M. Koo, Sci- ence 369 (2020) 446-450. |
[39] |
Z.Y. Jiang, H.X. Si, X. Chen, H.M. Liu, L. Zhang, Y.H. Zhang, C.H. Gong, J.W. Zhang, Compos. Commun. 22 (2020) 100503.
DOI URL |
[40] |
C.H. Sun, Z.R. Jia, S. Xu, D.Q. Hu, C.H. Zhang, G.L. Wu, J. Mater. Sci. Technol. 113 (2022) 128-137.
DOI URL |
[41] | E.B. Cui, F. Pan, Z. Xiang, Z.C. Liu, L.Z. Yu, J. Xiong, X. Li, W. Lu, Adv. Eng. Mater. 23 (2021) 20 0 0827. |
[42] |
G.H. Cheng, F. Pan, X.J. Zhu, Y.Y. Dong, L. Cai, W. Lu, Compos. Commun. 27 (2021) 100867.
DOI URL |
[43] |
Q. Li, X.J. Tian, W. Yang, L.Q. Hou, Y. Li, B. Jiang, X. Wang, Y.F. Li, Appl. Surf. Sci. 530 (2020) 147298.
DOI URL |
[44] | Y.X. Li, Y.J. Liao, L.Z. Ji, C.L. Hu, Z.H. Zhang, Z.Y. Zhang, R.Z. Zhao, H.W. Rong, G.W. Qin, X.F. Zhang, Small 18 (2022) 2107265. |
[45] |
J.J. Pan, X. Sun, T. Wang, Z.T. Zhu, Y.P. He, W. Xia, J.P. He, Appl. Surf. Sci. 457 (2018) 271-279.
DOI URL |
[46] |
D. Lan, Z.G. Gao, Z.H. Zhao, K.C. Kou, H.J. Wu, Compos. Commun. 26 (2021) 100767.
DOI URL |
[47] |
Y.L. Zhang, Z.L. Ma, K.P. Ruan, J.W. Gu, Nano Res. 15 (2022) 5601-5609.
DOI URL |
[48] |
P.B. Liu, S. Gao, G.Z. Zhang, Y. Huang, W.B. You, R.C. Che, Adv. Funct. Mater. 31 (2021) 2102812.
DOI URL |
[49] |
R.W. Shu, Z.L. Wan, J.B. Zhang, Y. Wu, J.J. Shi, Compos. Sci. Technol. 210 (2021) 108818.
DOI URL |
[50] | L. Wang, Z.L. Ma, Y.L. Zhang, H. Qiu, K.P. Ruan, J.W. Gu, Carbon Energy 4 (2022) 200-210. |
[51] |
Y.F. Cao, C.Y. Liu, Z.R. Xue, T. Jiang, G. Fang, K.S. Peng, Y.J. Zhang, Ceram. Int. 48 (2022) 5824-5830.
DOI URL |
[52] |
H.X. Xu, G.Z. Zhang, Y. Wang, M.Q. Ning, B. Ouyang, Y. Zhao, Y. Huang, P.B. Liu, Nano Micro Lett. 14 (2022) 102.
DOI URL |
[53] |
K. Su, Y. Wang, K.X. Hu, X. Fang, J. Yao, Q. Li, J. Yang, ACS Appl. Mater. Interfaces 13 (2021) 22017-22030.
DOI URL |
[54] | Y. Huang, J. Yan, S.H. Zhou, J.Y. Yang, P.B. Liu, J. Mater. Sci. Mater. Electron. 29 (2018) 70-79. |
[55] | C.Q. Song, X.W. Yin, M.K. Han, X.L. Li, Z.X. Hou, L.T. Zhang, L.F. Cheng,Carbon 116 (2017) 50-58. |
[56] |
K.X. Hu, H.H. Wang, X. Zhang, H. Huang, T. Qiu, Y. Wang, C.F. Zhang, L.M. Pan, J. Yang, Chem. Eng. J. 408 (2021) 127283.
DOI URL |
[57] |
Z. Cheng, R.F. Wang, Y.S. Cao, Z.W. Zhang, W.L. Ma, T.R. Zhang, F. Fan, Y. Huang, ACS Appl. Mater. Interfaces 14 (2022) 3218-3232.
DOI URL |
[58] |
L.L. Deng, R.W. Shu, J.B. Zhang, J. Colloid Interface Sci. 614 (2022) 110-119.
DOI URL |
[59] |
Y. Dai, X. Wu, Z. Liu, H.B. Zhang, Z.Z. Yu, Compos. Part B-Eng. 200 (2020) 108263.
DOI URL |
[60] | Y.A. Shi, X.Y. Ding, K.C. Pan, Z.H. Gao, J. Du, J. Qiu, J. Mater. Chem. A 10 (2022) 7705-7717. |
[61] | Y. Jiang, X. Xie, Y. Chen, Y.J. Liu, R. Yang, G.X. Sui, J. Mater. Chem. C 6 (2018) 8679-8687. |
[62] | T.P. Sun, Z.W. Liu, S. Li, H.S. Liu, F. Chen, K. Wang, Y. Zhao, Compos. Part A-Appl. Sci. Manuf. 150 (2021) 106594. |
[63] |
C. Chen, J.B. Xi, E.Z. Zhou, L. Peng, Z.C Chen, C. Gao, Nano Micro Lett. 10 (2017) 26.
DOI URL |
[64] |
H.B. Zhao, Z.B. Fu, H.B. Chen, M.L. Zhong, C.Y. Wang, ACS Appl. Mater. Interfaces 8 (2016) 1468-1477.
DOI URL |
[65] |
C. Li, Z.H. Li, X.S. Qi, X. Gong, Y.L. Chen, Q. Peng, C.Y. Deng, T. Jing, W. Zhong, J. Colloid Interface Sci. 605 (2022) 13-22.
DOI URL |
[66] | J. Xu, X. Zhang, H.R. Yuan, S. Zhang, C.L. Zhu, X.T. Zhang, Y.J. Chen,Carbon 159 (2020) 357-365. |
[67] |
Y. Jiang, Y. Chen, Y.J. Liu, G.X. Sui, Chem. Eng. J. 337 (2018) 522-531.
DOI URL |
[1] | Jing Xu, Ruiwen Shu, Zongli Wan, Jianjun Shi. Construction of three-dimensional hierarchical porous nitrogen-doped reduced graphene oxide/hollow cobalt ferrite composite aerogels toward highly efficient electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2023, 132(0): 193-200. |
[2] | Yujie Ren, Xin Wang, Jiaxin Ma, Qi Zheng, Lianjun Wang, Wan Jiang. Metal-organic framework-derived carbon-based composites for electromagnetic wave absorption: Dimension design and morphology regulation [J]. J. Mater. Sci. Technol., 2023, 132(0): 223-251. |
[3] | Lei Liu, Zhewen Ma, Menghe Zhu, Lina Liu, Jinfeng Dai, Yongqian Shi, Jiefeng Gao, Toan Dinh, Thanh Nguyen, Long-Cheng Tang, Pingan Song. Superhydrophobic self-extinguishing cotton fabrics for electromagnetic interference shielding and human motion detection [J]. J. Mater. Sci. Technol., 2023, 132(0): 59-68. |
[4] | Xiubo Xie, Yukun Wang, Xueqin Sun, Heshan Wang, Ronghai Yu, Wei Du, Hongjing Wu. Optimizing impedance matching by a dual-carbon Co-regulation strategy of Co3O4@rGO/celery stalks derived carbon composites for excellent microwave absorption [J]. J. Mater. Sci. Technol., 2023, 133(0): 1-11. |
[5] | Mingming Shen, Jiahao Ni, Yanxia Cao, Yanyu Yang, Wanjie Wang, Jianfeng Wang. Low infrared emitter from Ti3C2Tx MXene towards highly-efficient electric/solar and passive radiative heating [J]. J. Mater. Sci. Technol., 2023, 133(0): 32-40. |
[6] | Jin-Bo Cheng, Hai-Bo Zhao, Ai-Ning Zhang, Yan-Qin Wang, Yu-Zhong Wang. Porous carbon/Fe composites from waste fabric for high-efficiency electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 126(0): 266-274. |
[7] | Zirui Jia, Mingyue Kong, Bowen Yu, Yingzhuo Ma, Jiaying Pan, Guanglei Wu. Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties [J]. J. Mater. Sci. Technol., 2022, 127(0): 153-163. |
[8] | Lihua Yao, Wenqiang Cao, Jianguo Zhao, Qi Zheng, Yuchang Wang, Shang Jiang, Qiliang Pan, Jie Song, Youqi Zhu, Maosheng Cao. Regulating bifunctional flower-like NiFe2O4/graphene for green EMI shielding and lithium ion storage [J]. J. Mater. Sci. Technol., 2022, 127(0): 48-60. |
[9] | Kunpeng Qian, Shuang Li, Jianhui Fang, Yuhuan Yang, Shaomei Cao, Miao Miao, Xin Feng. C60 intercalating Ti3C2Tx MXenes assisted by γ-cyclodextrin for electromagnetic interference shielding films with high stability [J]. J. Mater. Sci. Technol., 2022, 127(0): 71-77. |
[10] | Q. Yan, B. Chen, L. Cao, K.Y. Liu, S. Li, L. Jia, K. Kondoh, J.S. Li. Improved mechanical properties in titanium matrix composites reinforced with quasi-continuously networked graphene nanosheets and in-situ formed carbides [J]. J. Mater. Sci. Technol., 2022, 96(0): 85-93. |
[11] | Zhong Zheng, Xuexi Zhang, Mingfang Qian, Jianchao Li, Muhammad Imran, Lin Geng. Ultra-high strength GNP/2024Al composite via thermomechanical treatment [J]. J. Mater. Sci. Technol., 2022, 108(0): 164-172. |
[12] | Jun Wei Chua, Xinwei Li, Tao Li, Beng Wah Chua, Xiang Yu, Wei Zhai. Customisable sound absorption properties of functionally graded metallic foams [J]. J. Mater. Sci. Technol., 2022, 108(0): 196-207. |
[13] | Tong Gao, Zhengyu Zhang, Yixing Li, Yujuan Song, Huawei Rong, Xuefeng Zhang. Solid-state reaction induced defects in multi-walled carbon nanotubes for improving microwave absorption properties [J]. J. Mater. Sci. Technol., 2022, 108(0): 37-45. |
[14] | Fei Pan, Lei Cai, Yanyan Dong, Xiaojie Zhu, Yuyang Shi, Wei Lu. Mixed-dimensional hierarchical configuration of 2D Ni2P nanosheets anchored on 1D silk-derived carbon fiber for extraordinary electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 101(0): 85-94. |
[15] | Hyunjun Park, Woong Kim, Sang Won Lee, Joohyung Park, Gyudo Lee, Dae Sung Yoon, Wonseok Lee, Jinsung Park. Flexible and disposable paper-based gas sensor using reduced graphene oxide/chitosan composite [J]. J. Mater. Sci. Technol., 2022, 101(0): 165-172. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||