J. Mater. Sci. Technol. ›› 2022, Vol. 127: 48-60.DOI: 10.1016/j.jmst.2022.04.010
• Research Article • Previous Articles Next Articles
Lihua Yaoa,b,c,1, Wenqiang Caoa,1, Jianguo Zhaoc,*(), Qi Zhenga, Yuchang Wanga, Shang Jiangc, Qiliang Panc, Jie Songc, Youqi Zhua, Maosheng Caoa,*(
)
Received:
2022-03-27
Revised:
2022-04-11
Accepted:
2022-04-12
Published:
2022-11-10
Online:
2022-11-10
Contact:
Jianguo Zhao,Maosheng Cao
About author:
caomaosheng@bit.edu.cn (M. Cao)Lihua Yao, Wenqiang Cao, Jianguo Zhao, Qi Zheng, Yuchang Wang, Shang Jiang, Qiliang Pan, Jie Song, Youqi Zhu, Maosheng Cao. Regulating bifunctional flower-like NiFe2O4/graphene for green EMI shielding and lithium ion storage[J]. J. Mater. Sci. Technol., 2022, 127: 48-60.
Fig. 1. (a) Schematic illustration of NFO-G composite synthesis route. SEM images of (b) NFO-G0, (c) NFO-G1, (d) NFO-G2, (e) NFO-G3, (f) NFO-G4, (g) NFO-G5.
Fig. 2. (a) SEM image and (b) EDS elemental mappings of the NFO-G3, (c, d) TEM images of the NFO-G3, (e) HRTEM image and (f) SAED pattern of the NFO-G3.
Fig. 3. (a) XRD patterns and (b) Raman spectra of NFO-G0-NFO-G5, (c) thermogravimetric curves of the precursors of NFO-G0-NFO-G5 in the air, (d) N2 adsorption/desorption isotherm curves of NFO-G0-NFO-G5 and the inset is Barrett-Joyner-Halenda (BJH) pore size distribution of NFO-G3.
Fig. 6. (a) 3D projection plot of SE for NFO-G0-NFO-G3, (b) average R and A coefficients and the ratio of R to A of NFO-G0-NFO-G3, (c) average SE, SEA and SER, and (d) the ratio of SER to SEA of NFO-G0-NFO-G3, (e) specific EMI SE and (f) green shielding index of NFO-G0-NFO-G3.
Fig. 9. (a) The rate capabilities of NFO-G0, NFO-G1, NFO-G2, NFO-G3, NFO-G4 and NFO-G5 at different current densities. The cycling performances of NFO-G0, NFO-G1, NFO-G2, NFO-G3, NFO-G4 and NFO-G5 at (b) 0.1 A g?1 and (c) 0.5 A g?1, (d) the electrochemical impedance plots of NFO-G0, NFO-G1, NFO-G2, NFO-G3, NFO-G4 and NFO-G5 before cycling and the equivalent electrical circuit (inset), (e) the cycling performance and Coulombic efficiency of NFO-G3 at 2 A g?1 and 5 A g?1.
Fig. 10. (a) CV curves of the NFO-G3 electrode at various scan rates, (b) linear fitting of peak current and scanning rate, (c) capacitive contribution at the scan rate of 0.2 mV s?1 in NFO-G3 electrode, (d) capacitance contribution ratio at various scan rates for NFO-G3 electrode.
Fig. 12. Schematic illustration of lithium storage mechanism of NFO-G with (a) moderate NiFe2O4, (b) excessive NiFe2O4 and (c) insufficient NiFe2O4, (d) EMI shielding mechanism of NFO-G.
[1] |
X.X. Wang, J.C. Shu, W.Q. Cao, M. Zhang, J. Yuan, M.S. Cao, Chem. Eng. J. 369 (2019) 1068-1077.
DOI URL |
[2] |
S.Y. Cheng, C. Zhang, H. Wang, J.R. Ye, Y. Li, Q. Zhuang, W. Dong, A.M. Xie, J. Mater. Sci. Technol. 119 (2022) 37-44.
DOI URL |
[3] |
F. Wang, W.H. Gu, J.B. Chen, Q.Q. Huang, M.Y. Han, G.H. Wang, G.B. Ji, J. Mater. Sci. Technol. 105 (2022) 92-100.
DOI |
[4] |
Y.Z. Jiao, S.Y. Cheng, F. Wu, J.Y. Shi, A.M. Xie, X.F. Zhu, W. Dong, J. Mater. Sci. Technol. 100 (2022) 206-215.
DOI URL |
[5] |
W. Liu, Q.W. Shao, G.B. Ji, X.H. Liang, Y. Cheng, B. Quan, Y.W. Du, Chem. Eng. J. 313 (2017) 734-744.
DOI URL |
[6] | Y.L. Zhang, Z.L. Ma, K.P. Ruan, J.W. Gu, Nano Res. 5 (2022) 5601-5609. |
[7] |
T.T. Liu, M.Q. Cao, Y.S. Fang, Y.H. Zhu, M.S. Cao, J. Mater. Sci. Technol. 112 (2022) 329-344.
DOI URL |
[8] |
Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan, W. She, Y.J. Yang, R.C. Che, Adv. Mater. 28 (2016) 486-490.
DOI URL |
[9] |
Y.L. Zhang, J.W. Gu, Nano-Micro Lett. 14 (2022) 89.
DOI PMID |
[10] |
Y.X. Han, K.P. Ruan, J.W. Gu, Nano Res. 15 (2022) 4747-4755.
DOI URL |
[11] |
M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, Carbon 48 (2010) 788-796.
DOI URL |
[12] |
Y. Zhao, L.L. Hao, X.D. Zhang, S.J. Tan, H.H. Li, J. Zheng, G.B. Ji, Small Sci. 2 (2022) 2100077.
DOI URL |
[13] |
F. Wang, W.H. Gu, J.B. Chen, Y. Wu, M. Zhou, S.L. Tang, X.Z. Cao, P. Zhang, G.B. Ji, Nano Res. 15 (2022) 3720-3728.
DOI URL |
[14] |
C.T. Cherian, J. Sundaramurthy, M.V. Reddy, P.S. Kumar, K. Mani, D. Pliszka, C.H. Sow, S. Ramakrishna, B.V.R. Chowdari, ACS Appl. Mater. Interfaces 5 (2013) 9957-9963.
DOI URL |
[15] | L.H. Yao, J.G. Zhao, J.W. Li, Int. J. Quantum Chem. 121 (2021) e26660. |
[16] |
L.H. Yao, W.Q. Cao, J.C. Shu, M.S. Cao, X.D. Sun, Chem. Eng. J. 413 (2021) 127428.
DOI URL |
[17] |
M.S. Cao, X.X. Wang, W.Q. Cao, X.Y. Fang, B. Wen, J. Yuan, Small 14 (2018) 1800987.
DOI URL |
[18] |
J.C. Shu, M.S. Cao, M. Zhang, X.X. Wang, W.Q. Cao, X.Y. Fang, M.Q. Cao, Adv. Funct. Mater. 30 (2020) 1908299.
DOI URL |
[19] |
W. Yue, Y.S. Liu, M.X. Zhao, F. Ye, L.F. Cheng, J. Mater. Sci. Technol. 35 (2019) 2897-2905.
DOI URL |
[20] |
X.M. Liu, N. Chai, Z.J. Yu, H.L. Xu, X.L. Li, J.Q. Liu, X.W. Yin, R. Riedel, J. Mater. Sci. Technol. 35 (2019) 2859-2867.
DOI URL |
[21] | X.X. Wang, W.Q. Cao, M.S. Cao, J. Yuan, Adv. Mater. 32 (2020) 2002112. |
[22] |
J.B. Chen, J. Zheng, Q.Q. Huang, G.H. Wang, G.B. Ji, J. Mater. Sci. Technol. 94 (2021) 239-246.
DOI URL |
[23] |
H. Sun, R.C. Che, X. You, Y.S. Jiang, Z.B. Yang, J. Deng, L.B. Qiu, H.S. Peng, Adv. Mater. 26 (2014) 8120-8125.
DOI URL |
[24] |
B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang, M.M. Lu, H.B. Jin, X.Y. Fang, W.Z. Wang, J. Yuan, Carbon 65 (2013) 124-139.
DOI URL |
[25] |
B. Wen, M.S. Cao, M.M. Lu, W.Q. Cao, H.L. Shi, J. Liu, X.X. Wang, H.B. Jin, X.Y. Fang, W.Z. Wang, J. Yuan, Adv. Mater. 26 (2014) 3484-3489.
DOI URL |
[26] |
C.B. Liang, H. Qiu, Y.Y. Han, P. Song, H.B. Gu, L. Wang, J. Kong, J.W. Gu, D.P. Cao, J. Mater. Chem. C 7 (2019) 2725-2733.
DOI URL |
[27] |
Y.M. Huangfu, K.P. Ruan, H. Qiu, Y.J. Lu, C.B. Liang, J. Kong, J.W. Gu, Compos. Part A 121 (2019) 265-272.
DOI URL |
[28] |
W.F. Zhao, J. Kong, H. Liu, Q. Zhuang, J.W. Gu, Z.H. Guo, Nanoscale 8 (2016) 19984-19993.
DOI URL |
[29] |
L. Wang, H. Qiu, C.B. Liang, P. Song, Y.X. Han, J.W. Gu, J. Kong, D. Pan, Z.H. Guo, Carbon 141 (2019) 506-514.
DOI |
[30] | D. Guo, H.R. Yuan, X.C. Wang, C.L. Zhu, Y.J. Chen, ACS Appl. Mater.Interfaces 12 (2020) 9628-9636. |
[31] |
X.C. Zhang, X. Zhang, H.R. Yuan, K.Y. Li, Q.Y. Ouyang, C.L. Zhu, S. Zhang, Y.J. Chen, Chem. Eng. J. 383 (2020) 123208.
DOI URL |
[32] |
J.R. Ma, X.X. Wang, W.Q. Cao, C. Han, H.J. Yang, J. Yuan, M.S. Cao, Chem. Eng. J. 339 (2018) 487-498.
DOI URL |
[33] |
Y.M. Huangfu, C.B. Liang, Y.X. Han, H. Qiu, P. Song, L. Wang, J. Kong, J.W. Gu, Compos. Sci. Technol. 169 (2019) 70-75.
DOI |
[34] | P. Song, Z.L. Ma, H. Qiu, Y.F. Ru, J.W. Gu, Nano-Micro Lett. 14 (2022) 51. |
[35] |
Y.L. Zhang, X.X. Wang, M.S. Cao, Nano Res. 11 (2018) 1426-1436.
DOI URL |
[36] |
P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407 (20 0 0) 496-499.
DOI URL |
[37] |
C. Vidal-Abarca, P. Lavela, J.L. Tirado, J. Phys. Chem. C 114 (2010) 12828-12832.
DOI URL |
[38] |
P. Lavela, J.L. Tirado, J. Power Sources 172 (2007) 379-387.
DOI URL |
[39] |
L.X. Liu, M.S. Zhu, S.Z. Huang, X.Y. Lu, L. Zhang, Y. Li, S.T. Wang, L.F. Liu, Q.H. Weng, O.G. Schmidt, J. Mater. Chem. A 7 (2019) 14097-14107.
DOI URL |
[40] | M. Islam, G. Ali, M.G. Jeong, W. Choi, K.Y. Chung, H.G. Jung, ACS Appl. Mater.Interfaces 9 (2017) 14833-14843. |
[41] |
X.H. Xia, Y.Q. Zhang, D.L. Chao, C. Guan, Y.J. Zhang, L. Li, X. Ge, I.M. Bacho, J.P. Tu, H.J. Fan, Nanoscale 6 (2014) 5008-5048.
DOI URL |
[42] |
Y.J. Chen, B.H. Qu, L.L. Hu, Z. Xu, Q.H. Li, T.H. Wang, Nanoscale 5 (2013) 9812-9820.
DOI URL |
[43] |
H. Long, T.L. Shi, S.L. Jiang, S. Xi, R. Chen, S.Y. Liu, G.L. Liao, Z.R. Tang, J. Mater. Chem. A 2 (2014) 3741-3748.
DOI URL |
[44] |
Y.L. Zhang, C.W. Jia, R.N. Tian, H.T. Guan, G. Chen, C.J. Dong, Rare Met. 40 (2021) 1578-1587.
DOI URL |
[45] |
Y.L. Zhang, W.Q. Cao, Y.Z. Cai, J.C. Shu, M.S. Cao, Inorg. Chem. Front. 6 (2019) 961-968.
DOI URL |
[46] |
J.Z. He, X.X. Wang, Y.L. Zhang, M.S. Cao, J. Mater. Chem. C 4 (2016) 7130-7140.
DOI URL |
[47] |
M. Fu, Q.Z. Jiao, Y. Zhao, J. Mater. Chem. A 1 (2013) 5577-5586.
DOI URL |
[48] | J. Qiu, P. Zhang, M. Ling, S. Li, P. Liu, H. Zhao, S. Zhang, ACS Appl. Mater.Inter-faces 4 (2012) 3636-3642. |
[49] |
W. Sun, L. Wan, X.H. Li, X. Zhao, X.B. Yan, J. Mater. Chem. A 4 (2016) 10948-10955.
DOI URL |
[50] |
J. Chen, G. Zou, H. Hou, Z. Yan, Z. Huang, X. Ji, J. Mater. Chem. A 4 (2016) 12591-12601.
DOI URL |
[51] |
M.S. Cao, Y.Z. Cai, P. He, J.C. Shu, W.Q. Cao, J. Yuan, Chem. Eng. J. 359 (2019) 1265-1302.
DOI URL |
[52] |
Z.J. Wang, L.N. Wu, J.G. Zhou, B.Z. Shen, Nanoscale 6 (2014) 12298-12302.
DOI URL |
[53] |
L. Kong, X.W. Yin, X.Y. Yuan, Y.J. Zhang, X.M. Liu, L.F. Cheng, L.T. Zhang, Carbon 73 (2014) 185-193.
DOI URL |
[54] |
G. Huang, F.F. Zhang, L.L. Zhang, X.C. Du, J.W. Wang, L.M. Wang, J. Mater. Chem. A 2 (2014) 8048-8053.
DOI URL |
[55] | G.D. Park, J.S. Cho, Y.C. Kang, ACS Appl. Mater.Interfaces 7 (2015) 16842-16849. |
[56] |
J.X. Zhu, D. Yang, X.H. Rui, D.H. Sim, H. Yu, H.E. Hoster, P.M. Ajayan, Q.Y. Yan, Small 9 (2013) 3390-3397.
DOI URL |
[57] |
X.J. Gao, J.W. Wang, D. Zhang, K.Q. Nie, Y.Y. Ma, J. Zhong, X.H. Sun, J. Mater. Chem. A 5 (2017) 5007-5012.
DOI URL |
[58] |
J.S. Cho, Y.J. Hong, Y.C. Kang, ACS Nano 9 (2015) 4026-4035.
DOI URL |
[59] |
Y.L. Xiao, J.T. Zai, X.M. Li, Y. Gong, B. Li, Q.Y. Han, X.F. Qian, Nano Energy 6 (2014) 51-58.
DOI URL |
[60] |
R.C. Jin, H. Jiang, Y.X. Sun, Y.Q. Ma, H.H. Li, G. Chen, Chem. Eng. J. 303 (2016) 501-510.
DOI URL |
[61] |
J. Wang, W. Li, F. Wang, Y. Xia, A.M. Asiri, D. Zhao, Nanoscale 6 (2014) 3217-3222.
DOI URL |
[62] |
J.X. Zhu, Z.Y. Yin, D. Yang, T. Sun, H. Yu, H.E. Hoster, H.H. Hng, H. Zhang, Q.Y. Yan, Energy Environ. Sci. 6 (2013) 987-993.
DOI URL |
[63] |
H.R. Zhang, X.Y. Qin, J.X. Wu, Y.B. He, H.D. Du, B.H. Li, F.Y. Kang, J. Mater. Chem. A 3 (2015) 7112-7120.
DOI URL |
[64] |
H. Lindstrom, S. Sodergren, A. Solbrand, H. Rensmo, J. Hjelm, A. Hagfeldt, S.E. Lindquist, J. Phys. Chem. B 101 (1997) 7710-7716.
DOI URL |
[65] |
D.L. Chao, P. Liang, Z. Chen, L.Y. Bai, H. Shen, X.X. Liu, X.H. Xia, Y.L. Zhao, S.V. Savilov, J.Y. Lin, Z.X. Shen, ACS Nano 10 (2016) 10211-10219.
DOI URL |
[66] |
L. Yang, H. Chen, W. Song, D. Fang, ACS Appl. Mater. Interfaces 10 (2018) 43623-43630.
DOI URL |
[67] |
J. Wang, J. Polleux, J. Lim, B. Dunn, J. Phys. Chem. C 111 (2007) 14925-14931.
DOI URL |
[68] |
Y.Z. Cai, W.Q. Cao, Y.L. Zhang, P. He, J.C. Shu, M.S. Cao, J. Alloy. Compd. 811 (2019) 152011.
DOI URL |
[69] |
C. Han, W.Q. Cao, M.S. Cao, Inorg. Chem. Front. 7 (2020) 4101-4112.
DOI URL |
[1] | Bin Sun, Zili Zhang, Jing Xu, Yanpeng Lv, Yang Jin. Composite separator based on PI film for advanced lithium metal batteries [J]. J. Mater. Sci. Technol., 2022, 102(0): 264-271. |
[2] | Yawei Zhang, Shuangshuang Li, Xinwei Tang, Wei Fan, Qianqian Lan, Le Li, Piming Ma, Weifu Dong, Zicheng Wang, Tianxi Liu. Ultralight and ordered lamellar polyimide-based graphene foams with efficient broadband electromagnetic absorption [J]. J. Mater. Sci. Technol., 2022, 102(0): 97-104. |
[3] | Zhengzheng Guo, Penggang Ren, Zengping Zhang, Zhong Dai, Zhenxia Lu, Yanling Jin, Fang Ren. Fabrication of carbonized spent coffee grounds/graphene nanoplates/cyanate ester composites for superior and highly absorbed electromagnetic interference shielding performance [J]. J. Mater. Sci. Technol., 2022, 102(0): 123-131. |
[4] | Yongqiang Ren, Xiuyan Li, Yinan Wang, Qinghua Gong, Shaonan Gu, Tingting Gao, Xuefeng Sun, Guowei Zhou. Self-template formation of porous yolk-shell structure Mo-doped NiCo2O4 toward enhanced lithium storage performance as anode material [J]. J. Mater. Sci. Technol., 2022, 102(0): 186-194. |
[5] | Jinghao Li, Kehan Le, Wei Wei. Enabling a stable and dendrite-suppressed Zn anode via facile surface roughness engineering [J]. J. Mater. Sci. Technol., 2022, 102(0): 272-277. |
[6] | Xue Tan, Qilong Yuan, Mengting Qiu, Jinhong Yu, Nan Jiang, Cheng-Te Lin, Wen Dai. Rational design of graphene/polymer composites with excellent electromagnetic interference shielding effectiveness and high thermal conductivity: a mini review [J]. J. Mater. Sci. Technol., 2022, 117(0): 238-250. |
[7] | Xinlu Zhang, Lu Han, Junfeng Li, Ting Lu, Jinliang Li, Guang Zhu, Likun Pan. A novel Sn-based coordination polymer with high-efficiency and ultrafast lithium storage [J]. J. Mater. Sci. Technol., 2022, 97(0): 156-164. |
[8] | Wenhao Qian, Tao Song, Mao Ye, Xiaoyu Huang, Yongjun Li, Bingjie Hao. Functionalized nanographene oxide/PEG/rhodamine B/gold nanocomposite for electrochemical determination of glucose [J]. J. Mater. Sci. Technol., 2022, 122(0): 141-147. |
[9] | Juan Liu, Ning Wang, Fuwei Zheng, Chuanxing Wang, Jing Wang, Baorong Hou, Qianyu Zhao, Yanli Ning, Yiteng Hu. CuInS2/TiO2 heterojunction with elevated photo-electrochemical performance for cathodic protection [J]. J. Mater. Sci. Technol., 2022, 122(0): 211-218. |
[10] | Rui Guo, Qi Zheng, Lianjun Wang, Yuchi Fan, Wan Jiang. Porous N-doped Ni@SiO2/graphene network: Three-dimensional hierarchical architecture for strong and broad electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 106(0): 108-117. |
[11] | Fuxi Peng, Mingfeng Dai, Zhenyu Wang, Yifan Guo, Zuowan Zhou. Progress in graphene-based magnetic hybrids towards highly efficiency for microwave absorption [J]. J. Mater. Sci. Technol., 2022, 106(0): 147-161. |
[12] | Xianghong Chen, Haiying Lu, Yu Lei, Jiakui Zhang, Feng Xiao, Rui Wang, Peiran Xie, Jiantie Xu. Expanded graphite confined SnO2 as anode for lithium ion batteries with low average working potential and enhanced rate capability [J]. J. Mater. Sci. Technol., 2022, 107(0): 165-171. |
[13] | Jingqi Chen, Xianlei Hu, Haitao Gao, Shu Yan, Shoudong Chen, Xianghua Liu. Graphene-wrapped MnCO3/Mn3O4 nanocomposite as an advanced anode material for lithium-ion batteries: Synergistic effect and electrochemical performances [J]. J. Mater. Sci. Technol., 2022, 99(0): 9-17. |
[14] | Chuanliang Wei, Liwen Tan, Yuchan Zhang, Huiyu Jiang, Baojuan Xi, Shenglin Xiong, Jinkui Feng. Room-temperature liquid metal engineered iron current collector enables stable and dendrite-free sodium metal batteries in carbonate electrolytes [J]. J. Mater. Sci. Technol., 2022, 115(0): 156-165. |
[15] | Zhiyong Liu, Wenyuan Shi, Teng Yang, Zhidong Zhang. Magic angles and flat Chern bands in alternating-twist multilayer graphene system [J]. J. Mater. Sci. Technol., 2022, 111(0): 28-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||