J. Mater. Sci. Technol. ›› 2022, Vol. 131: 167-176.DOI: 10.1016/j.jmst.2022.05.039
• Research Article • Previous Articles Next Articles
Chao Hea, Jianxin Zhoua, Yan Yanga,b,*(), Bin Jianga,b,*(
), Ming Yuana,d, Zhihua Donga, Yanfu Chaic, Weijun Hea, Guangsheng Huanga, Dingfei Zhanga, Fusheng Pana,b
Received:
2022-02-16
Revised:
2022-04-30
Accepted:
2022-05-26
Published:
2022-06-18
Online:
2022-06-18
Contact:
Yan Yang,Bin Jiang
About author:
jiangbinrong@cqu.edu.cn (B. Jiang)Chao He, Jianxin Zhou, Yan Yang, Bin Jiang, Ming Yuan, Zhihua Dong, Yanfu Chai, Weijun He, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. In-situ investigation on the microstructure evolution of Mg-2Gd alloys during the V-bending tests[J]. J. Mater. Sci. Technol., 2022, 131: 167-176.
Fig. 1. Microstructure and texture of the as-extruded Mg-2Gd (wt%) alloys: (a) {0001} PF; (b) IPF coloring maps; (c) the bending load-punch stroke (PS) curves and (d) the slopes of the loads-PS curve.
Fig. 2. (a) FE-SEM image, (b) electron backscatter diffraction results of inverse pole figure (IPF) coloring map and (c) the correspond {0001} PF and the {10-10} PF measured on the ND surface of as-received and deformed specimens at different PSs under the in-situ bending test of Mg-2Gd alloys.
Fig. 3. High magnification FE-SEM surface image, IPF map and SF distribution map measured on the surface (ND plane) of the deformed specimens at PSs = 8 mm in the ex-situ bending test of Mg-2Gd alloys: (a) grains 1-5, (b) grains 6-10 and (c) grains 11-14.
Fig. 5. In-situ observation of the twinning behavior when the bending sample at different PSs under the in-situ bending test of Mg-2Gd alloys: (a) M1, (b) M2 and (c) M3.
Fig. 6. Texture evolution in the cross-sectional of the 2 mm-bent Mg-Gd samples: (a, d) the IPF coloring map, (b, e) special grain boundaries map and (c, f) the {0001} PF (a—c) in the outer tensile region and (d-f) in the inner compress region. The locations of the EBSD observation are highlighted in the SEM images.
Fig. 7. Microstructure and the texture of the as-extruded AZ31 alloys: (a) {0001} PF; (b) IPF maps; (c) the bending load-punch stroke (PS) curves and (d) the slopes of the loads-PS curve of the Mg-Gd alloy under the condition that V-shaped die angle of 60°, the die span of 20 mm.
Fig. 8. (a) FE-SEM surface image and (b) the IPF measured on the ND surface of as-received and deformed specimens at different PSs under the in-situ bending test of AZ31 alloys.
Fig. 9. High magnification FE-SEM surface image measured on the ND surface of the deformed specimens at different PSs under the in-situ bending test of (a) AZ31 and (b) Mg-2Gd alloys.
Fig. 10. HAADF-STEM image and corresponding EDX maps showing solute distribution near the grain boundaries in (a-d) AZ31 alloy and the (e, f) Mg-Gd alloy; (g) the Gd atoms distribution along the green line in (f).
Grain | Euler angle (°) | SF | ||
---|---|---|---|---|
φ1 | φ | φ2 | ||
1 | 165.4 | 11.6 | 14.4 | 0.04 |
2 | 32.6 | 140.4 | 52.9 | 0.32 |
3 | 106.9 | 169.6 | 12.5 | 0.17 |
4 | 177.1 | 160.6 | 25.7 | 0.02 |
5 | 176.5 | 147.2 | 8.7 | 0.03 |
6 | 62.7 | 124.3 | 34.0 | 0.48 |
7 | 119.8 | 172.4 | 4.6 | 0.10 |
8 | 130.1 | 173.3 | 21.4 | 0.08 |
9 | 35.6 | 165.0 | 35.9 | 0.13 |
10 | 143.6 | 162.6 | 33.8 | 0.16 |
11 | 102.9 | 170.4 | 21.9 | 0.36 |
12 | 93.2 | 153.0 | 56.2 | 0.4 |
13 | 145.3 | 164.3 | 34.4 | 0.14 |
14 | 127.3 | 156.9 | 9.5 | 0.26 |
Table. 1. Orientation messages and corresponding SF basal values of the selected grains in Fig. 3.
Grain | Euler angle (°) | SF | ||
---|---|---|---|---|
φ1 | φ | φ2 | ||
1 | 165.4 | 11.6 | 14.4 | 0.04 |
2 | 32.6 | 140.4 | 52.9 | 0.32 |
3 | 106.9 | 169.6 | 12.5 | 0.17 |
4 | 177.1 | 160.6 | 25.7 | 0.02 |
5 | 176.5 | 147.2 | 8.7 | 0.03 |
6 | 62.7 | 124.3 | 34.0 | 0.48 |
7 | 119.8 | 172.4 | 4.6 | 0.10 |
8 | 130.1 | 173.3 | 21.4 | 0.08 |
9 | 35.6 | 165.0 | 35.9 | 0.13 |
10 | 143.6 | 162.6 | 33.8 | 0.16 |
11 | 102.9 | 170.4 | 21.9 | 0.36 |
12 | 93.2 | 153.0 | 56.2 | 0.4 |
13 | 145.3 | 164.3 | 34.4 | 0.14 |
14 | 127.3 | 156.9 | 9.5 | 0.26 |
[1] |
C.M. Cepeda-Jiménez, M. Castillo-Rodríguez, M.T. Pérez-Prado, Acta Mater. 165 (2019) 164-176.
DOI |
[2] | Y. Gui, L. Ouyang, Y. Cui, H. Bian, Q. Li, A. Chiba, J. Magnes. Alloy 2 (2021) 456-466. |
[3] |
C. Liu, X. Chen, J. Chen, A. Atrens, F. Pan, J. Magnes. Alloy 9 (2021) 1084-1097.
DOI URL |
[4] |
J. Ninlachart, N. Shrestha, K.S. Raja, J. Magnes. Alloy 8 (2020) 731-751.
DOI URL |
[5] |
Q. Wang, B. Jiang, A. Tang, J. Fu, Z. Jiang, H. Sheng, D. Zhang, G. Huang, F. Pan, J. Mater. Sci. Technol. 43 (2020) 104-118.
DOI URL |
[6] |
H. Pan, R. Kang, J. Li, H. Xie, Z. Zeng, Q. Huang, C. Yang, Y. Ren, G. Qin, Acta Mater. 186 (2020) 278-290.
DOI URL |
[7] |
M.G. Jiang, C. Xu, H. Yan, T. Nakata, Z.W. Chen, C.S. Lao, R.S. Chen, S. Kamado, E.H. Han, J. Magnes. Alloy 9 (2021) 1797-1805.
DOI URL |
[8]. |
Q. Wang, S. Chen, B. Jiang, Z. Jin, L. Zhao, J. He, D. Zhang, G. Huang, F. Pan, J. Magnes. Alloy (2021), doi:10.1016/j.jma.2021.03.015.
DOI |
[9] | W.L. Cheng, M.J. Hao, L.F. Wang, H. Yu, H.X. Wang, Mater. Sci. Eng. A 789 (2020) 139606. |
[10] |
S. Liu, H. Liu, X. Chen, G. Huang, Q. Zou, A. Tang, B. Jiang, Y. Zhu, F. Pan, J. Mater. Sci. Technol. 113 (2022) 271-286.
DOI URL |
[11] |
D.F. Shi, M.T. Pérez-Prado, C.M. Cepeda-Jiménez, Acta Mater. 180 (2019) 218-230.
DOI |
[12] |
J. He, Y. Mao, S. Lu, K. Xiong, S. Zhang, B. Jiang, F. Pan, Mater. Sci. Eng. A 760 (2019) 174-185.
DOI URL |
[13] |
L. Jin, J. Dong, J. Sun, A.A. Luo, Int. J. Plast. 72 (2015) 218-232.
DOI URL |
[14] |
J.U. Lee, S.-.H. Kim, Y.J. Kim, S.H. Park, J. Alloys Compd. 787 (2019) 519-526.
DOI URL |
[15] | C. He, M. Yuan, B. Jiang, L. Liu, Q. Wang, Y. Chai, W. Liu, G. Huang, D. Zhang, F. Pan, Mater. Sci. Eng. A 832 (2021) 142397. |
[16] |
J. Singh, M.S. Kim, S.H. Choi, Int. J. Plast. 117 (2019) 33-57.
DOI URL |
[17] |
W. Ren, J. Li, R. Xin, Scr. Mater. 170 (2019) 6-10.
DOI URL |
[18] |
W. Wang, W. Zhang, W. Chen, G. Cui, E. Wang, J. Alloys Compd. 737 (2018) 505-514.
DOI URL |
[19] | K. Hu, Q. Le, W. Zhou, C. Li, Q. Liao, F. Yu, Mater. Charact. 159 (2020) 110065. |
[20] | C. He, B. Jiang, Q. Wang, Y. Chai, J. Zhao, M. Yuan, G. Huang, D. Zhang, F. Pan, Mater. Sci. Eng. A 799 (2021) 140290. |
[21] |
J. He, Y. Mao, Y. Fu, B. Jiang, K. Xiong, S. Zhang, F. Pan, J. Alloys Compd. 797 (2019) 443-455.
DOI URL |
[22] |
Q. Yang, B. Jiang, B. Song, Z. Yu, D. He, Y. Chai, J. Zhang, F. Pan, J. Magnes. Alloy 10 (2022) 411-422.
DOI URL |
[23] |
L.Y. Zhao, H. Yan, R.S. Chen, E.H. Han, J. Mater. Sci. Technol. 60 (2021) 162-167.
DOI |
[24] |
I. Aslam, B. Li, Z. McClelland, S.J. Horstemeyer, Q. Ma, P.T. Wang, M.F. Horste-meyer, Mater. Sci. Eng. A 590 (2014) 168-173.
DOI URL |
[25] |
K. Wang, J. Wang, X. Dou, Y. Huang, N. Hort, S. Gavras, S. Liu, Y. Cai, J. Wang, F. Pan, J. Mater. Sci. Technol. 52 (2020) 72-82.
DOI |
[26] |
H. Fu, B. Ge, Y. Xin, R. Wu, C. Fernandez, J. Huang, Q. Peng, Nano Lett. 17 (2017) 6117-6124.
DOI URL |
[27] |
R. Ahmad, Z. Wu, W.A. Curtin, Acta Mater. 183 (2020) 228-241.
DOI URL |
[28] | K. Wang, X. Dou, J. Wang, Y. Huang, S. Gavras, N. Hort, S. Liu, H. Hu, J. Wang, F. Pan, Mater. Sci. Eng. A 790 (2020) 139635. |
[29] |
X. Jin, W. Xu, Z. Yang, C. Yuan, D. Shan, B. Teng, B.C. Jin, J. Mater. Sci. Technol. 45 (2020) 133-145.
DOI URL |
[30] | J. Zhao, B. Jiang, A. Tang, Y. Chai, B. Liu, H. Sheng, T. Yang, G. Huang, D. Zhang, F. Pan, Mater. Charact. 159 (2020) 110041. |
[31] | T. Zhao, Y. Hu, B. He, C. Zhang, T. Zheng, F. Pan, Mater. Sci. Eng. A 765 (2019) 138292. |
[32] | X. Liu, X. Chen, J. Li, C. Liu, D. Zhao, R. Cheng, F. Pan, Prog. Nat. Sci. Mater. 30 (2020) 213-220. |
[33] |
J.C. Baird, B. Li, S. Yazdan Parast, S.J. Horstemeyer, L.G. Hector, P.T. Wang, M.F. Horstemeyer, Scr. Mater. 67 (2012) 471-474.
DOI URL |
[34] |
D. Liu, R. Xin, L. Zhao, Y. Hu, J. Alloys Compd. 693 (2017) 808-815.
DOI URL |
[35] |
C. Zhao, X. Chen, F. Pan, S. Gao, D. Zhao, X. Liu, Mater. Sci. Eng. A 713 (2018) 244-252.
DOI URL |
[36] |
J. Singh, M.S. Kim, S.H. Choi, J. Alloys Compd. 708 (2017) 694-705.
DOI URL |
[37] |
D. Guan, X. Liu, J. Gao, L. Ma, B. Wynne, W.M. Rainforth, J. Alloys Compd. 774 (2019) 556-564.
DOI URL |
[38] |
D. Guan, B. Wynne, J. Gao, Y. Huang, W.M. Rainforth, Acta Mater. 170 (2019) 1-14.
DOI URL |
[39] |
C.M. Cepeda-Jiménez, C. Prado-Martínez, M.T. Pérez-Prado, Acta Mater. 145 (2018) 264-277.
DOI URL |
[40] | I.A. Anyanwu, S. Kamado, Y. Kojima, Mater. Trans. Sendai 7 (2001) 1206-1211. |
[41] |
A.J.Freeman R.Wu, G.B. Olson, Science 265 (1994) 376-380.
PMID |
[42] | S. Zhang, O.Y. Kontsevoi, A.J. Freeman, G.B. Olson, Phys. Rev. B 82 (2010) 224107. |
[43] |
W.T. Geng, A.J. Freeman, R. Wu, G.B. Olson, Phys. Rev. B 62 (20 0 0) 6208-6214.
DOI URL |
[44] |
L.R. Xiao, X.F. Chen, Y. Cao, H. Zhou, X.L. Ma, D.D. Yin, B. Ye, X.D. Han, Y.T. Zhu, Scri. Mater. 177 (2020) 69-73.
DOI URL |
[45] |
T. Tsuru, H. Somekawa, D.C. Chrzan, Acta Mater. 151 (2018) 78-86.
DOI URL |
[46] |
X.H. Shao, Z.Z. Peng, Q.Q. Jin, X.L. Ma, Acta Mater. 118 (2016) 177-186.
DOI URL |
[1] | Lin He, Shiwei Wu, Anping Dong, Haibin Tang, Dafan Du, Guoliang Zhu, Baode Sun, Wentao Yan. Selective laser melting of dense and crack-free AlCoCrFeNi2.1 eutectic high entropy alloy: Synergizing strength and ductility [J]. J. Mater. Sci. Technol., 2022, 117(0): 133-145. |
[2] | M.S. Moyle, N. Haghdadi, X.Z. Liao, S.P. Ringer, S. Primig. On the microstructure and texture evolution in 17-4 PH stainless steel during laser powder bed fusion: Towards textural design [J]. J. Mater. Sci. Technol., 2022, 117(0): 183-195. |
[3] | Yingchun Liu, Hongjun Zhang, Wenming Shi, Qian Wang, Guicheng jiang, Bin Yang, Wenwu Cao, Jiubin Tan. Ultrahigh strain in textured BCZT-based lead-free ceramics with CuO sintering agent [J]. J. Mater. Sci. Technol., 2022, 117(0): 207-214. |
[4] | Yifeng Wang, Yilin Song, Kaikai Song, Lin Pan, Changchun Chen, Kunihito Koumoto, Qingfeng Liu. Enhanced thermoelectric performance of n-type Bi2Te2.7Se0.3 via a simple liquid-assisted shear exfoliation [J]. J. Mater. Sci. Technol., 2022, 117(0): 251-258. |
[5] | Young-Kyun Kim, Kee-Ahn Lee. Stabilized sub-grain and nano carbides-driven 1.2 GPa grade ultra-strong CrMnFeCoNi high-entropy alloy additively manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 117(0): 8-22. |
[6] | Xinyu Zhang, Chuanwei Li, Mengyao Zheng, Xudong Yang, Zhenhua Ye, Jianfeng Gu. Chemical, microstructure, and mechanical property of TiAl alloys produced by high-power direct laser deposition [J]. J. Mater. Sci. Technol., 2022, 117(0): 99-108. |
[7] | Jufu Jiang, Minjie Huang, Ying Wang, Yingze Liu, Ying Zhang. Microstructure evolution and formation mechanism of CoCrCu1.2FeNi high entropy alloy during the whole process of semi‐solid billet preparation [J]. J. Mater. Sci. Technol., 2022, 120(0): 172-185. |
[8] | F. Liu, Z.Y. Liu, G.Y. He, L.N. Ou. Dislocation ordering and texture strengthening of naturally aged Al-Cu-Mg alloy [J]. J. Mater. Sci. Technol., 2022, 118(0): 1-14. |
[9] | Wenhui Yao, Liang Wu, Jingfeng Wang, Bin Jiang, Dingfei Zhang, Maria Serdechnova, Tatsiana Shulha, Carsten Blawert, Mikhail L. Zheludkevich, Fusheng Pan. Micro-arc oxidation of magnesium alloys: A review [J]. J. Mater. Sci. Technol., 2022, 118(0): 158-180. |
[10] | Yue Wu, Xiaofan Zhang, Boyi Wang, Jingxuan Liang, Zipei Zhang, Jiawei Yang, Ximeng Dong, Shuqi Zheng, Huai-zhou Zhao. Decoupling of thermoelectric transport performance of Ag doped and Se alloyed tellurium induced by carrier mobility compensation [J]. J. Mater. Sci. Technol., 2022, 101(0): 71-79. |
[11] | Yingmei Tan, Ruirun Chen, Hongze Fang, Yangli Liu, Hongzhi Cui, Yanqing Su, Jingjie Guo, Hengzhi Fu. Enhanced strength and ductility in Ti46Al4Nb1Mo alloys via boron addition [J]. J. Mater. Sci. Technol., 2022, 102(0): 16-23. |
[12] | Xu Liu, Lin Song, Andreas Stark, Uwe Lorenz, Zhanbing He, Junpin Lin, Florian Pyczak, Tiebang Zhang. Deformation and phase transformation behaviors of a high Nb-containing TiAl alloy compressed at intermediate temperatures [J]. J. Mater. Sci. Technol., 2022, 102(0): 89-96. |
[13] | C.L. Jia, L.H. Wu, P. Xue, D.R. Ni, B.L. Xiao, Z.Y. Ma. Effect of static annealing on superplastic behavior of a friction stir welded Ti-6Al-4V alloy joint and microstructural evolution during deformation [J]. J. Mater. Sci. Technol., 2022, 130(0): 112-123. |
[14] | Yanning Chen, Liang Wu, Wenhui Yao, Jiahao Wu, Jianpeng Xiang, Xiaowei Dai, Tao Wu, Yuan Yuan, Jingfeng Wang, Bin Jiang, Fusheng Pan. Development of metal-organic framework (MOF) decorated graphene oxide/MgAl-layered double hydroxide coating via microstructural optimization for anti-corrosion micro-arc oxidation coatings of magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 130(0): 12-26. |
[15] | Shuai Zeng, Yongkang Zhou, Huan Li, Hongwei Zhang, Haifeng Zhang, Zhengwang Zhu. Microstructure and mechanical properties of lightweight Ti3Zr1.5NbVAlx (x = 0, 0.25, 0.5 and 0.75) refractory complex concentrated alloys [J]. J. Mater. Sci. Technol., 2022, 130(0): 64-74. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||