J. Mater. Sci. Technol. ›› 2022, Vol. 130: 53-63.DOI: 10.1016/j.jmst.2022.04.043
• Research Article • Previous Articles Next Articles
P.M. Chenga, C. Yanga, P. Zhanga, J.Y. Zhanga, H. Wangb, J. Kuanga,*(), G. Liua, J. Suna,*(
)
Received:
2022-03-20
Revised:
2022-04-20
Accepted:
2022-04-24
Published:
2022-12-10
Online:
2022-12-07
Contact:
J. Kuang,J. Sun
About author:
E-mail addresses: junsun@mail.xjtu.edu.cn (J. Sun)P.M. Cheng, C. Yang, P. Zhang, J.Y. Zhang, H. Wang, J. Kuang, G. Liu, J. Sun. Enhancing the high-temperature creep properties of Mo alloys via nanosized La2O3 particle addition[J]. J. Mater. Sci. Technol., 2022, 130: 53-63.
Fig. 1. Sheet cross-section microstructures paralleling the rolling direction in PM and Mo-La2O3 alloys were observed by OM: (a) pure Mo, (b) Mo-0.6 wt.% La2O3, (c) Mo-0.9 wt.% La2O3, (d) Mo-1.5 wt.% La2O3.
Mat. | Grain width (μm) | Grain length (μm) | Length/width ratio | ||
---|---|---|---|---|---|
Empty Cell | Average size | Standard deviation | Average size | Standard deviation | Empty Cell |
PM | 32.8 | 12.4 | 35.4 | 15.8 | 1.08 |
Mo-0.6 wt.% La2O3 | 31.9 | 19.7 | 52.6 | 35.2 | 1.65 |
Mo-0.9 wt.% La2O3 | 34.2 | 17.8 | 84.6 | 43.9 | 2.47 |
Mo-1.5 wt.% La2O3 | 28.4 | 14.9 | 90.2 | 44.7 | 3.14 |
Table 1. Statistical results of grain size in pure Mo and Mo-La2O3 alloys.
Mat. | Grain width (μm) | Grain length (μm) | Length/width ratio | ||
---|---|---|---|---|---|
Empty Cell | Average size | Standard deviation | Average size | Standard deviation | Empty Cell |
PM | 32.8 | 12.4 | 35.4 | 15.8 | 1.08 |
Mo-0.6 wt.% La2O3 | 31.9 | 19.7 | 52.6 | 35.2 | 1.65 |
Mo-0.9 wt.% La2O3 | 34.2 | 17.8 | 84.6 | 43.9 | 2.47 |
Mo-1.5 wt.% La2O3 | 28.4 | 14.9 | 90.2 | 44.7 | 3.14 |
Mat. | Intragranular particle | Intergranular particle | ||||
---|---|---|---|---|---|---|
Size < 100 nm | Volume fraction (%) | Size (100-1000 nm) | Volume fraction (%) | Average size (μm) | Volume fraction (%) | |
Mo- 0.6 wt.% La2O3 | 65.5 ± 12.1 | 1.5 ± 0.3 | 382.5 ± 201.8 | 0.37 ± 0.15 | 0.82 ± 0.42 | 0.31 ± 0.17 |
Mo- 0.9 wt.% La2O3 | 71.8 ± 12.8 | 2.2 ± 0.8 | 415.3 ± 258.2 | 0.57 ± 0.28 | 0.87 ± 0.51 | 0.66 ± 0.28 |
Mo- 1.5 wt.% La2O3 | 73.5 ± 13.5 | 2.4 ± 0.6 | 395.3 ± 265.2 | 1.05 ± 0.41 | 1.02 ± 0.53 | 0.87 ± 0.42 |
Table 2. Statistical results of particle parameters in Mo-La2O3 alloys.
Mat. | Intragranular particle | Intergranular particle | ||||
---|---|---|---|---|---|---|
Size < 100 nm | Volume fraction (%) | Size (100-1000 nm) | Volume fraction (%) | Average size (μm) | Volume fraction (%) | |
Mo- 0.6 wt.% La2O3 | 65.5 ± 12.1 | 1.5 ± 0.3 | 382.5 ± 201.8 | 0.37 ± 0.15 | 0.82 ± 0.42 | 0.31 ± 0.17 |
Mo- 0.9 wt.% La2O3 | 71.8 ± 12.8 | 2.2 ± 0.8 | 415.3 ± 258.2 | 0.57 ± 0.28 | 0.87 ± 0.51 | 0.66 ± 0.28 |
Mo- 1.5 wt.% La2O3 | 73.5 ± 13.5 | 2.4 ± 0.6 | 395.3 ± 265.2 | 1.05 ± 0.41 | 1.02 ± 0.53 | 0.87 ± 0.42 |
Fig. 4. Double logarithm plots of steady creep rate vs stress relation at different temperatures: (a) pure Mo, (b) Mo-0.6 wt.% La2O3, (c) Mo-0.9 wt.% La2O3, (d) Mo-1.5 wt.% La2O3.
Fig. 7. SEM micrographs showed the fracture surface of Mo-0.6 wt.% La2O3 alloy crept at 1400 °C/70 MPa (a1, a2) and 1400 °C/50 MPa (b1, b2). (a1, b1) and (a2, b2) are respectively observed at low and high magnification.
Fig. 8. Representative TEM graphs showed the dislocation structure of Mo-La2O3 alloys after creep testing (a-c), and interaction between particle and dislocation (d).
Fig. 9. Steady creep date plotted in normalized form $\frac{\dot{ε}}{ Dv }$ vs $\frac{σ}{ E }$ for Mo alloys with different La2O3 addition: (a) 0.6 wt.%, (b) 0.9 wt.%, (c) 1.5 wt.%, and (d) the variation of geometric particle parameters $\frac{1}{\sqrt{λ?r }}$ on particle characteristics.
[1] |
J.H. Perepezko, Science 326 (2009) 1068-1069.
DOI PMID |
[2] |
D.M. Dimiduk, MRS Bull. 28 (2003) 639-645.
DOI URL |
[3] | K.Y. Upadhya, J.M. Yang, W.P. Hoffman, Am. Ceram. Soc. Bull. 76 (1997) 51-56. |
[4] |
C. Pöhl, J. Schatte, H. Leitner, J. Alloy. Compd. 576 (2013) 250-256.
DOI URL |
[5] | R. Janisch, C. Elsässer, Phys. Rev. B 67 (2003) 2209-2219. |
[6] |
M.K. Miller, E.A. Kenik, M.S. Mousa, K.F. Russell, A.J. Bryhan, Scr. Mater. 46 (2002) 299-303.
DOI URL |
[7] | H. Kimura, Mater. Trans. JIM 29 (2007) 521-539. |
[8] |
B.V. Cockeram, Metall. Mater. Trans. A 40 (2009) 2843-2860.
DOI URL |
[9] | G.J. Zhang, Y.J. Sun, Z. Chao, J.F. Wei, J. Sun, Mater. Sci. Eng. A 483 (2008) 350-352. |
[10] |
J.X. Zhang, L. Liu, M.L. Zhou, Y.C. Hu, T.Y. Zuo, Int. J. Refract. Met. Hard Mater. 17 (1999) 405-409.
DOI URL |
[11] |
W. Hu, T. Sun, C. Liu, L. Yu, Z. Ma, J. Mater. Sci. Technol. 88 (2021) 36-44.
DOI URL |
[12] |
G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, E. Ma, Nat. Mater. 12 (2013) 344.
DOI PMID |
[13] |
P.M. Cheng, S.L. Li, G.J. Zhang, J.Y. Zhang, G. Liu, J. Sun, Mater. Sci. Eng. A 619 (2014) 345-353.
DOI URL |
[14] |
G.J. Zhang, G. Liu, Y.J. Sun, F. Jiang, L. Wang, R. Wang, J. Sun, Int. J. Refract. Met. Hard Mater. 27 (2009) 173-176.
DOI URL |
[15] |
B.V. Cockeram, Mater. Sci. Eng. A 528 (2010) 288-308.
DOI URL |
[16] |
L. Vanherpe, N. Moelans, B. Blanpain, S. Vandewalle, Comput. Mater. Sci. 49 (2010) 340-350.
DOI URL |
[17] |
S. Majumdar, S. Raveendra, I. Samajdar, P. Bhargava, I.G. Sharma, Acta Mater. 57 (2009) 4158-4168.
DOI URL |
[18] |
B.V. Cockeram, Mater. Sci. Eng. A 418 (2006) 120-136.
DOI URL |
[19] |
B.V. Cockeram, Metall. Mater. Trans. A 33 (2002) 3685-3707.
DOI URL |
[20] |
P.M. Cheng, G.J. Zhang, J.Y. Zhang, G. Liu, J. Sun, Mater. Sci. Eng. A 640 (2015) 320-329.
DOI URL |
[21] |
P.M. Cheng, Z.J. Zhang, G.J. Zhang, J.Y. Zhang, K. Wu, G. Liu, W. Fu, J. Sun, P.M. Cheng, Z.J. Zhang, Mater. Sci. Eng. A 707 (2017) 295-305.
DOI URL |
[22] |
C. Pöhl, J. Schatte, H. Leitner, Mater. Charact. 77 (2013) 63-69.
DOI URL |
[23] |
G. Liu, G.J. Zhang, X.D. Ding, J. Sun, K.H. Chen, Metall. Mater. Trans. A 35 (2004) 1725-1734.
DOI URL |
[24] |
G. Liu, J. Sun, C.W. Nan, K.H. Chen, Acta Mater. 53 (2005) 3459-3468.
DOI URL |
[25] |
G. Liu, G.J. Zhang, R.H. Wang, W. Hu, J. Sun, K.H. Chen, Acta Mater. 55 (2007) 273-284.
DOI URL |
[26] |
M.E. Kassner, M.T. Pérez-Prado, Prog. Mater. Sci. 45 (2000) 1-102.
DOI URL |
[27] | E. Arzt, R. Timmins, Overiew Repor, COST (1988). |
[28] | J. Rösler, R. Joos, E. Arzt, Metall. Trans. A 23 (1992) 15211539. |
[29] |
S.E. Broyles, K.R. Anderson, J.R. Groza, J.C. Gibeling, Metall. Mater. Trans. A 27 (1996) 1217-1227.
DOI URL |
[30] |
J.C. Gibeling, W.D. Nix, Mater. Sci. Eng. 45 (1980) 123-135.
DOI URL |
[31] |
J. Askill, D.H. Tomlin, Philos. Mag. 8 (1963) 997-1001.
DOI URL |
[32] |
J. Ciulik, E.M. Taleff, Mater. Sci. Eng. A 463 (2007) 197-202.
DOI URL |
[33] |
R.W. Lund, W.D. Nix, Acta Metall. 24 (1976) 469-481.
DOI URL |
[34] |
E. Arzt, D.S. Wilkinson, Acta Metall. 34 (1986) 1893-1898.
DOI URL |
[35] |
A.H. Clauer, N. Hansen, Acta Metall. 32 (1984) 269-278.
DOI URL |
[36] |
W. Pavinich, R. Raj, Metall. Trans. A 8 (1977) 1917-1933.
DOI URL |
[37] |
D.C. Dunand, B.Q. Han, A.M. Jansen, Metall. Mater. Trans. A 30 (1999) 829-838.
DOI URL |
[1] | J. Li, C. Xu, G. Zheng, W.J. Dai, C.C. Bu, G. Chen. On the microstructural origin of premature failure of creep strength enhanced martensitic steels [J]. J. Mater. Sci. Technol., 2021, 87(0): 269-279. |
[2] | Daoren GONG, Zhongmin YANG, Qiang SHEN, Lianmeng ZHANG. Densification of Mo Alloys at 1473 K by Adding Ni-Cu Solid Solution [J]. J Mater Sci Technol, 2004, 20(03): 361-362. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||