J. Mater. Sci. Technol. ›› 2022, Vol. 130: 64-74.DOI: 10.1016/j.jmst.2022.05.005
• Research Article • Previous Articles Next Articles
Shuai Zenga,b,c, Yongkang Zhoua,b,c, Huan Lia,b,c, Hongwei Zhanga,c, Haifeng Zhanga,c, Zhengwang Zhua,c,*()
Received:
2022-02-28
Revised:
2022-04-27
Accepted:
2022-05-05
Published:
2022-12-10
Online:
2022-12-07
Contact:
Zhengwang Zhu
About author:
∗ Shi-changxu Innovation Center for Advanced Mate- rials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China. E-mail address: zwzhu@imr.ac.cn (Z. Zhu).Shuai Zeng, Yongkang Zhou, Huan Li, Hongwei Zhang, Haifeng Zhang, Zhengwang Zhu. Microstructure and mechanical properties of lightweight Ti3Zr1.5NbVAlx (x = 0, 0.25, 0.5 and 0.75) refractory complex concentrated alloys[J]. J. Mater. Sci. Technol., 2022, 130: 64-74.
Alloys | Regions | Ti | Zr | Nb | V | Al |
---|---|---|---|---|---|---|
Al0 | Interdendrite | 46.0 | 24.9 | 13.8 | 15.3 | 0 |
Dendrite | 47.4 | 21.3 | 16.0 | 15.3 | 0 | |
Al0.25 | Interdendrite | 42.6 | 25.5 | 12.4 | 14.9 | 4.6 |
Dendrite | 46.2 | 18.3 | 17.8 | 14.2 | 3.5 | |
Al0.5 | Interdendrite | 40.8 | 25.7 | 11.2 | 14.2 | 8.1 |
Dendrite | 44.2 | 20.8 | 13.9 | 14.1 | 7.0 | |
Al0.75 | Interdendrite | 39.7 | 24.4 | 11.2 | 13.5 | 11.2 |
Dendrite | 43.4 | 17.1 | 16.3 | 13.8 | 9.4 |
Table 1. Chemical compositions of the Ti3Zr1.5NbVAlx RCCAs.
Alloys | Regions | Ti | Zr | Nb | V | Al |
---|---|---|---|---|---|---|
Al0 | Interdendrite | 46.0 | 24.9 | 13.8 | 15.3 | 0 |
Dendrite | 47.4 | 21.3 | 16.0 | 15.3 | 0 | |
Al0.25 | Interdendrite | 42.6 | 25.5 | 12.4 | 14.9 | 4.6 |
Dendrite | 46.2 | 18.3 | 17.8 | 14.2 | 3.5 | |
Al0.5 | Interdendrite | 40.8 | 25.7 | 11.2 | 14.2 | 8.1 |
Dendrite | 44.2 | 20.8 | 13.9 | 14.1 | 7.0 | |
Al0.75 | Interdendrite | 39.7 | 24.4 | 11.2 | 13.5 | 11.2 |
Dendrite | 43.4 | 17.1 | 16.3 | 13.8 | 9.4 |
Fig. 4. Typical EBSD inverse pole figure (the inset shows grain size distribution). (a) Al0 alloy, (b) Al0.25 alloy, (c) Al0.5 alloy, (d) Al0.75 alloy.
Fig. 5. (a-d) The TEM bright-field images and corresponding selected area electron diffraction (SAED) patterns of the as-cast Al0, Al0.25, Al0.5 and Al0.75 alloys, respectively, (e, f) The filtered high resolution (HR) images and corresponding Fast Fourier Transform (FFT) patterns of Al0.5 and Al0.75 alloys.
Fig. 6. APT results of the as-cast Al0.5 alloy. (a) APT reconstruction showing individual ion maps for Ti, Zr, V, Nb, and Al, (b) Reconstruction showing the nano-scale B2 clusters encapsulated by 20% Zr iso-concentration surface, (c) 2-D Zr ion concentration map (top), and 2-D Nb ion concentration map (bottom), (d) Proximity histogram showing the compositional partitioning of the elements across the BCC/B2 interface.
Fig. 7. Mechanical behavior of as-cast Ti3Zr1.5NbVAlx RCCAs. (a) The room temperature tensile engineering stress-strain curves, (b) The true stress-strain curve, (c) Comparison between specific yield strength-ductility at room temperature of the as-cast Ti3Zr1.5NbVAlx RCCAs with previous reported RCCAs [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37].
Fig. 8. SEM micrographs of the fracture surface of the as-cast Ti3Zr1.5NbVAlx RCCAs. (a) Al0 alloy, (b) Al.025 alloy, (c) Al0.5 alloy, (d) Al0.75 alloy.
Fig. 9. (a-c) BF TEM micrographs of dislocation substructures of Al0.25 alloy (the yellow arrows indicate the HDDWs, cell blocks, dislocation loops, dislocation pinning), (d, e) BF TEM micrographs of dislocation substructures of Al0.5 alloy (the yellow arrows indicate the microband, planar dislocation arrays), (f) Dislocation spacing of Al0.25 and Al0.5 alloys. The yellow arrows represent the dislocation spacing. The error bars are standard deviations of the mean.
Alloy | ΔHmix (kJ/mol) | δ (%) | ΔSmix (J/K mol) | VEC | Ω |
---|---|---|---|---|---|
Al0 | −0.09 | 5.20 | 10.57 | 4.31 | 239.67 |
Al0.25 | −4.25 | 5.11 | 11.49 | 4.26 | 5.68 |
Al0.5 | −7.82 | 5.01 | 11.95 | 4.21 | 3.15 |
Al0.75 | −10.93 | 4.93 | 12.24 | 4.17 | 2.26 |
Table 2. The empirical parameters for the Ti3Zr1.5NbVAlx RCCAs.
Alloy | ΔHmix (kJ/mol) | δ (%) | ΔSmix (J/K mol) | VEC | Ω |
---|---|---|---|---|---|
Al0 | −0.09 | 5.20 | 10.57 | 4.31 | 239.67 |
Al0.25 | −4.25 | 5.11 | 11.49 | 4.26 | 5.68 |
Al0.5 | −7.82 | 5.01 | 11.95 | 4.21 | 3.15 |
Al0.75 | −10.93 | 4.93 | 12.24 | 4.17 | 2.26 |
Properties | Ti | Zr | Nb | V | Al |
---|---|---|---|---|---|
r (Å) | 1.462 | 1.603 | 1.429 | 1.312 | 1.432 |
G (GPa) | 45 | 35 | 38 | 47 | 25 |
σy(MPa) | 140 | 207 | 105 | 150 | 30 |
Table 3. Basic elemental data for the Ti3Zr1.5NbVAlx RCCAs.
Properties | Ti | Zr | Nb | V | Al |
---|---|---|---|---|---|
r (Å) | 1.462 | 1.603 | 1.429 | 1.312 | 1.432 |
G (GPa) | 45 | 35 | 38 | 47 | 25 |
σy(MPa) | 140 | 207 | 105 | 150 | 30 |
[1] |
E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. 4 (2019) 515-534.
DOI |
[2] |
S. Gorsse, D.B. Miracle, O.N. Senkov, Acta Mater. 135 (2017) 177-187.
DOI URL |
[3] | W. Li, D. Xie, D. Li, Y. Zhang, Y. Gao, P.K. Liaw, Prog. Mater. Sci.(2021) 100777. |
[4] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI PMID |
[5] |
Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kon-tis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T.G. Nieh, Z. Lu, Nature 563 (2018) 546-550.
DOI URL |
[6] |
X. Yan, P.K. Liaw, Y. Zhang, J. Mater. Sci. Technol. 110 (2022) 109-116.
DOI URL |
[7] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[8] |
J. Pang, H. Zhang, L. Zhang, Z. Zhu, H. Fu, H. Li, A. Wang, Z. Li, H. Zhang, J. Mater. Sci. Technol. 78 (2021) 74-80.
DOI URL |
[9] |
Z. An, S. Mao, Y. Liu, L. Wang, H. Zhou, B. Gan, Z. Zhang, X. Han, J. Mater. Sci. Technol. 79 (2021) 109-117.
DOI URL |
[10] |
Senkov G.B. Wilks J.M. Scott D.B. Miracle, Intermetallics 19 (2011) 698-706.
DOI URL |
[11] |
Senkov J.K. Jensen A.L. Pilchak D.B. Miracle H.L. Fraser, Mater. Des. 139 (2018) 498-511.
DOI URL |
[12] |
Senkov S.V. Senkova C. Woodward D.B. Miracle, Acta Mater. 61 (2013) 1545-1557.
DOI URL |
[13] |
K. Ren, H. Liu, R. Chen, Y. Tang, B. Guo, S. Li, J. Wang, R. Wang, F. Lu, Mater. Sci. Eng. A 827 (2021) 142074.
DOI URL |
[14] |
Senkov S.V. Senkova D.B. Miracle C. Woodward, Mater. Sci. Eng. A 565 (2013) 51-62.
DOI URL |
[15] |
N.Y. Yurchenko, N.D. Stepanov, A.O. Gridneva, M.V. Mishunin, G.A. Salishchev, S.V. Zherebtsov, J. Alloy. Compd. 757 (2018) 403-414.
DOI URL |
[16] |
N.Y. Yurchenko, N.D. Stepanov, S.V. Zherebtsov, M.A. Tikhonovsky, G.A. Sal-ishchev, Mater. Sci. Eng. A 704 (2017) 82-90.
DOI URL |
[17] |
Y. Qiu, Y.J. Hu, A. Taylor, M.J. Styles, R.K.W. Marceau, A.V. Ceguerra, M.A. Gib-son, Z.K. Liu, H.L. Fraser, N. Birbilis, Acta Mater. 123 (2017) 115-124.
DOI URL |
[18] |
Senkov, D. Isheim, D.N. Seidman, A.L. Pilchak, Entropy 18 (2016) 102.
DOI URL |
[19] |
H. Chen, A. Kauffmann, S. Seils, T. Boll, C.H. Liebscher, I. Harding, K.S. Kumar, D.V. Szabó, S. Schlabach, S. Kauffmann-Weiss, F. Müller, B. Gorr, H.J. Christ, M. Heilmaier, Acta Mater. 176 (2019) 123-133.
DOI |
[20] |
V. Soni, B. Gwalani, T. Alam, S. Dasari, Y. Zheng, O.N. Senkov, D. Miracle, R. Banerjee, Acta Mater. 185 (2020) 89-97.
DOI URL |
[21] |
V. Soni, O.N. Senkov, B. Gwalani, D.B. Miracle, R. Banerjee, Sci. Rep. 8 (2018) 8816.
DOI PMID |
[22] |
C.M. Lin, C.C. Juan, C.H. Chang, C.W. Tsai, J.W. Yeh, J. Alloy. Compd. 624 (2015) 100-107.
DOI URL |
[23] |
Y. Chen, Z. Xu, M. Wang, Y. Li, C. Wu, Y. Yang, Mater. Sci. Eng. A 792 (2020) 139774.
DOI URL |
[24] |
J.P. Couzinié, O.N. Senkov, D.B. Miracle, G. Dirras, Data Brief 21 (2018) 1622-1641.
DOI PMID |
[25] |
Y.D. Wu, Y.H. Cai, T. Wang, J.J. Si, J. Zhu, Y.D. Wang, X.D. Hui, Mater. Lett. 130 (2014) 277-280.
DOI URL |
[26] | H.L. Huang, Y. Wu, J.Y. He, H. Wang, X.J. Liu, K. An, W. Wu, Z.P. Lu, Adv. Mater. 29 (2017) 7. |
[27] |
L. Lilensten, J.P. Couzinié, J. Bourgon, L. Perrière, G. Dirras, F. Prima, I. Guillot, Mater. Res. Lett. 5 (2017) 110-116.
DOI URL |
[28] |
Z. Han, L. Meng, J. Yang, G. Liu, J. Yang, R. Wei, G. Zhang, Mater. Sci. Eng. A 825 (2021) 141908.
DOI URL |
[29] | S. Wei, S.J. Kim, J. Kang, Y. Zhang, Y. Zhang, T. Furuhara, E.S. Park, C.C. Tasan, Nat. Mater. (2020). |
[30] |
Z. An, S. Mao, T. Yang, C.T. Liu, B. Zhang, E. Ma, H. Zhou, Z. Zhang, L. Wang, X. Han, Mater. Horiz. 8 (2021) 948-955.
DOI URL |
[31] |
S. Wang, D. Wu, H. She, M. Wu, D. Shu, A. Dong, H. Lai, B. Sun, Mater. Sci. Eng. C 113 (2020) 110959.
DOI URL |
[32] |
Y. Wu, J. Si, D. Lin, T. Wang, W.Y. Wang, Y. Wang, Z. Liu, X. Hui, Mater. Sci. Eng. A 724 (2018) 249-259.
DOI URL |
[33] |
M. Feuerbacher, M. Heidelmann, C. Thomas, Philos. Mag. 95 (2015) 1221-1232.
DOI URL |
[34] |
G. Dirras, L. Lilensten, P. Djemia, M. Laurent-Brocq, D. Tingaud, J.P. Couzinié, L. Perrière, T. Chauveau, I. Guillot, Mater. Sci. Eng. A 654 (2016) 30-38.
DOI URL |
[35] |
Senkov S.L. Semiatin J. Alloy. Compd. 649 (2015) 1110-1123.
DOI URL |
[36] |
C.C. Juan, M.H. Tsai, C.W. Tsai, W.L. Hsu, C.M. Lin, S.K. Chen, S.J. Lin, J.W. Yeh, Mater. Lett. 184 (2016) 200-203.
DOI URL |
[37] |
S. Chen, K.K. Tseng, Y. Tong, W. Li, C.W. Tsai, J.W. Yeh, P.K. Liaw, J. Alloy. Compd. 795 (2019) 19-26.
DOI URL |
[38] |
J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Acta Mater. 62 (2014) 105-113.
DOI URL |
[39] |
J. Pang, H. Zhang, L. Zhang, Z. Zhu, H. Fu, H. Li, A. Wang, Z. Li, H. Zhang, Mater. Sci. Eng. A 831 (2022) 142290.
DOI URL |
[40] |
X. Yang, Y. Zhang, Mater. Chem. Phys. 132 (2012) 233-238.
DOI URL |
[41] |
Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Adv. Eng. Mater. 10 (2008) 534-538.
DOI URL |
[42] |
M.G. Poletti, L. Battezzati, Acta Mater. 75 (2014) 297-306.
DOI URL |
[43] |
H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, M.C. Gao, J. Alloy. Compd. 696 (2017) 1139-1150.
DOI URL |
[44] | E.O. Hall, Proc. Phys. Soc. Sect. B 64 (1951) 747-753. |
[45] | N.J. Petch, J. Iron Steel Inst. 174 (1953) 25-28. |
[46] | R. Labusch, Phys. Status Solidi 41 (1970) 659-669. |
[47] |
R.L. Fleischer, Acta Metall. 10 (1962) 835-842.
DOI URL |
[48] |
S.P. Wang, J. Xu, Intermetallics 95 (2018) 59-72.
DOI URL |
[49] |
Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R.O. Ritchie, Q. Yu, Nature 574 (2019) 223-227.
DOI URL |
[50] |
B. Cai, B. Liu, S. Kabra, Y. Wang, K. Yan, P.D. Lee, Y. Liu, Acta Mater. 127 (2017) 471-480.
DOI URL |
[51] | R.E. Smallman, R.J. Bishop, Metals and Materials: Science, Processes, Applica-tions, Butterworth-Heinemann, 1995. |
[52] |
M.J. Lai, C.C. Tasan, D. Raabe, Acta Mater. 100 (2015) 290-300.
DOI URL |
[1] | Yingmei Tan, Ruirun Chen, Hongze Fang, Yangli Liu, Hongzhi Cui, Yanqing Su, Jingjie Guo, Hengzhi Fu. Enhanced strength and ductility in Ti46Al4Nb1Mo alloys via boron addition [J]. J. Mater. Sci. Technol., 2022, 102(0): 16-23. |
[2] | Xu Liu, Lin Song, Andreas Stark, Uwe Lorenz, Zhanbing He, Junpin Lin, Florian Pyczak, Tiebang Zhang. Deformation and phase transformation behaviors of a high Nb-containing TiAl alloy compressed at intermediate temperatures [J]. J. Mater. Sci. Technol., 2022, 102(0): 89-96. |
[3] | Jingbo Gao, Yuting Jin, Yongqiang Fan, Dake Xu, Lei Meng, Cong Wang, Yuanping Yu, Deliang Zhang, Fuhui Wang. Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying [J]. J. Mater. Sci. Technol., 2022, 102(0): 159-165. |
[4] | Haoming Pang, Zhenbang Xu, Longjiang Shen, Jun Li, Junshuo Zhang, Zhiyuan Li, Shouhu Xuan, Xinglong Gong. The dynamic compressive properties of magnetorheological plastomers: enhanced magnetic-induced stresses by non-magnetic particles [J]. J. Mater. Sci. Technol., 2022, 102(0): 195-203. |
[5] | Z.W. Wang, J.F. Zhang, G.M. Xie, L.H. Wu, H. Zhang, P. Xue, D.R. Ni, B.L. Xiao, Z.Y. Ma. Evolution mechanisms of microstructure and mechanical properties in a friction stir welded ultrahigh-strength quenching and partitioning steel [J]. J. Mater. Sci. Technol., 2022, 102(0): 213-223. |
[6] | Zhang N.B., Xu J., Feng Z.D., Sun Y.F., Huang J.Y., Zhao X.J., Yao X.H., Chen S., Lu L., Luo S.N.. Shock compression and spallation damage of high-entropy alloy Al0.1CoCrFeNi [J]. J. Mater. Sci. Technol., 2022, 128(0): 1-9. |
[7] | W. Zheng, J.M. Wu, S. Chen, K.B. Yu, J. Zhang, Y.S. Shi. Improved mechanical properties of SiC fiber reinforced silica-based ceramic cores fabricated by stereolithography [J]. J. Mater. Sci. Technol., 2022, 116(0): 161-168. |
[8] | Hui Shen, Qingquan Zhang, Ying Yang, Yang Ren, Yanbao Guo, Yafeng Yang, Zhonghan Li, Zhiwei Xiong, Xiangguang Kong, Zhihui Zhang, Fangmin Guo, Lishan Cui, Shijie Hao. Selective laser melted high Ni content TiNi alloy with superior superelasticity and hardwearing [J]. J. Mater. Sci. Technol., 2022, 116(0): 246-257. |
[9] | Lin He, Shiwei Wu, Anping Dong, Haibin Tang, Dafan Du, Guoliang Zhu, Baode Sun, Wentao Yan. Selective laser melting of dense and crack-free AlCoCrFeNi2.1 eutectic high entropy alloy: Synergizing strength and ductility [J]. J. Mater. Sci. Technol., 2022, 117(0): 133-145. |
[10] | M.S. Moyle, N. Haghdadi, X.Z. Liao, S.P. Ringer, S. Primig. On the microstructure and texture evolution in 17-4 PH stainless steel during laser powder bed fusion: Towards textural design [J]. J. Mater. Sci. Technol., 2022, 117(0): 183-195. |
[11] | Tao Xiang, Peng Du, Zeyun Cai, Kun Li, Weizong Bao, Xinxin Yang, Guoqiang Xie. Phase-tunable equiatomic and non-equiatomic Ti-Zr-Nb-Ta high-entropy alloys with ultrahigh strength for metallic biomaterials [J]. J. Mater. Sci. Technol., 2022, 117(0): 196-206. |
[12] | Yifeng Wang, Yilin Song, Kaikai Song, Lin Pan, Changchun Chen, Kunihito Koumoto, Qingfeng Liu. Enhanced thermoelectric performance of n-type Bi2Te2.7Se0.3 via a simple liquid-assisted shear exfoliation [J]. J. Mater. Sci. Technol., 2022, 117(0): 251-258. |
[13] | Young-Kyun Kim, Kee-Ahn Lee. Stabilized sub-grain and nano carbides-driven 1.2 GPa grade ultra-strong CrMnFeCoNi high-entropy alloy additively manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 117(0): 8-22. |
[14] | Xinyu Zhang, Chuanwei Li, Mengyao Zheng, Xudong Yang, Zhenhua Ye, Jianfeng Gu. Chemical, microstructure, and mechanical property of TiAl alloys produced by high-power direct laser deposition [J]. J. Mater. Sci. Technol., 2022, 117(0): 99-108. |
[15] | Seungmi Kwak, Jaehwang Kim, Hongsheng Ding, Xuesong Xu, Ruirun Chen, Jingjie Guo, Hengzhi Fu. Using multiple regression analysis to predict directionally solidified TiAl mechanical property [J]. J. Mater. Sci. Technol., 2022, 104(0): 285-291. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||