J. Mater. Sci. Technol. ›› 2022, Vol. 130: 44-52.DOI: 10.1016/j.jmst.2022.04.033
• Research Article • Previous Articles Next Articles
Xiangyu Donga, Shuxiang Zhanga, Yi Xub, Longquan Chenb, Qiang Weia,c,d,*(), Changsheng Zhaoa,c,*(
)
Received:
2022-02-24
Revised:
2022-04-04
Accepted:
2022-04-24
Published:
2022-12-10
Online:
2022-12-07
Contact:
Qiang Wei,Changsheng Zhao
About author:
E-mail addresses: zhaochsh70@scu.edu.cn (C. Zhao)Xiangyu Dong, Shuxiang Zhang, Yi Xu, Longquan Chen, Qiang Wei, Changsheng Zhao. A cell retrievable strategy for harvesting extracellular matrix as active biointerface[J]. J. Mater. Sci. Technol., 2022, 130: 44-52.
Fig. 1. Schematic illustration of manipulation technique and ECM coatings. (a) Schematic illustration displays the fabrication of ECM coatings utilizing gelatin hydrogels. By this method, cell sheets can be reused. (b) Microscope images before and after removing HUVEC cell sheet; (c) SEM images of blank glass substrate (Control) and decellularized glass substrate (ECM); (d) Representative immunofluorescence images of collagen I in the ECM coatings generated by HUVECs on different kinds of substrate (ECM). Control represents the related blank substrates.
Sample | C (%) | N (%) | O (%) | Si (%) | N/C (%) | O/C (%) |
---|---|---|---|---|---|---|
Control | 39.93 | 0.00 | 21.84 | 38.24 | 0.00 | 0.55 |
MC3T3 | 51.43 | 5.80 | 20.03 | 22.75 | 0.11 | 0.39 |
HUVEC | 63.61 | 7.41 | 18.43 | 10.54 | 0.12 | 0.29 |
L929 | 62.96 | 6.38 | 17.75 | 12.91 | 0.10 | 0.28 |
Table 1. Surface chemical composition of different types of ECM coatings as detected by XPS.
Sample | C (%) | N (%) | O (%) | Si (%) | N/C (%) | O/C (%) |
---|---|---|---|---|---|---|
Control | 39.93 | 0.00 | 21.84 | 38.24 | 0.00 | 0.55 |
MC3T3 | 51.43 | 5.80 | 20.03 | 22.75 | 0.11 | 0.39 |
HUVEC | 63.61 | 7.41 | 18.43 | 10.54 | 0.12 | 0.29 |
L929 | 62.96 | 6.38 | 17.75 | 12.91 | 0.10 | 0.28 |
Fig. 2. ECM coating characterization. (a) Young's modulus distribution of different types of the hydrated ECM coatings as measured by AFM with different Peak Force Setpoint (0.5nN, 1Nn, 2nN). (b) Anhydrous thickness of ECM coatings on SiO2 surfaces as determined by ellipsometry (n = 6, one-way ANOVA). (c) Representative immunofluorescence images of collagen I in ECM coatings. Control group represents a blank glass substrate. (d) QCM frequency shift (Δf) of the desorption of ECM coatings from Au sensor surfaces. The blue curve stands for PBS rinsing. The red curve indicates trypsin washing, and the black curve demonstrates the SDS flushing. (e) Hydrated mass of the ECM coatings as calculated from the QCM results.
Fig. 3. Reuse of cell sheets. (a) Viability of the cells after being detached from the culturing glass surfaces and transferred to new glass surfaces. (b) ECM coatings generated by the fresh (above) and reused (below) L929 cells. (c) L929 cell fragment residues left in the ECM coatings as detected by cell membrane probe after decellularizing by the presented method (left) and the traditional cell lysis (right). (d) Area ratio of the cell membrane residual as detected by the membrane probe (n = 5, t-tests).
Fig. 4. Cell adhesion on ECM coatings. (a) Representative fluorescence images of F-actin and paxillin staining MC3T3 cells and the related area of the spreading cells and focal adhesions as well as the circularity of the cells on the ECM coatings generated by MC3T3 cells for 4 h. (b) Representative fluorescence images of F-actin and paxillin staining L929 cells and the related area of the spreading cells and focal adhesions on the ECM coatings generated by L929 cells for 24 h. (c) Representative fluorescence images of F-actin and paxillin staining HUVEC cells and the related area of the spreading cells and focal adhesions on the ECM coatings generated by HUVEC cells for 30 min. The control groups represented the cells adhered on the pristine glass surfaces. For all analysis n > 100, t-tests.
Fig. 5. Stem cell differentiation on the functional ECM coatings. (a) Representative immunofluorescence images of hMSCs stained with osterix on different types of ECM coatings after culturing for 2 days. (b) Representative ALP staining images of hMSCs on different types of ECM coatings after culturing for 7 days. (c) Representative immunofluorescence images of hMSCs stained with α-SMA on different types of ECM coatings after culturing for 7 days. (d) Representative immunofluorescence images of hMSCs stained with CD31 on different types of ECM coatings after culturing for 7 days. (e) Nuclear/cytoplasmic ratios of the average fluorescent intensity of osterix as shown in (a) (n > 50, one-way ANOVA). (f) Percentage of the ALP positive cells as shown in (b) (n = 3, one-way ANOVA). (g) Quantification of the average fluorescent intensity of α-SMA as shown in (c) (n > 50, one-way ANOVA). (h) Quantification of the average fluorescent intensity of CD31 as shown in (d) (n > 50, one-way ANOVA). The control groups represented the hMSCs on the pristine glass surfaces. M-ECM, L-ECM and H-ECM groups represented the hMSCs on the MC3T3, L929 and HUVEC generated ECM coatings, respectively.
[1] |
F.D. Miller, D.R. Kaplan, Cell Stem Cell 10 (2012) 650-652.
DOI PMID |
[2] |
A.K. Gaharwar, I. Singh, A. Khademhosseini, Nat. Rev. Mater 5 (2020) 686-705.
DOI URL |
[3] |
X. Lin, Y. Bai, H. Zhou, L. Yang, J. Mater. Sci. Technol 59 (2020) 227-233.
DOI URL |
[4] |
M.F. Pittenger, A.M. Mackay, S.C. Beck, R.K. Jaiswal, R. Douglas, J.D. Mosca, M.A. Moorman, D.W. Simonetti, S. Craig, D.R. Marshak, Science 284 (1999) 143-147.
DOI PMID |
[5] |
H.M. Xia, X. Li, W.W. Gao, X. Fu, R.H. Fang, L.F. Zhang, K. Zhang, Nat. Rev. Mater. 3 (2018) 174-193.
DOI URL |
[6] |
F.H. Blackhall, C.L.R. Merry, E.J. Davies, G.C. Jayson, Br. J. Cancer 85 (2001) 1094-1098.
DOI URL |
[7] | D.L. Matera, K.M. DiLillo, M.R. Smith, C.D. Davidson, R. Parikh, M. Said, C.A. Wilke, I.M. Lombaert, K.B. Arnold, B.B. Moore, B.M. Baker, Sci. Adv. 6 (2020) 14. |
[8] |
A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Cell 126 (2006) 677-689.
DOI PMID |
[9] |
O. Chaudhuri, L. Gu, D. Klumpers, M. Darnell, S.A. Bencherif, J.C. Weaver, N. Huebsch, H.-P. Lee, E. Lippens, G.N. Duda, D.J. Mooney, Nat. Mater. 15 (2016) 326-334.
DOI PMID |
[10] | Q. Sun, Y. Hou, Z. Chu, Q. Wei, Bioact. Mater. 10 (2022) 397-404. |
[11] |
Q. Sun, Q. Wei, C. Zhao, Chin. Sci. Bull. 66 (2021) 2303-2311.
DOI URL |
[12] |
K. Lee, Y. Chen, X. Li, N. Kawazoe, Y. Yang, G. Chen, J. Mater. Sci. Technol. 63 (2021) 1-8.
DOI URL |
[13] |
G.S. Hussey, J.L. Dziki, S.F. Badylak, Nat. Rev. Mater. 3 (2018) 159-173.
DOI URL |
[14] |
E. Garreta, R. Oria, C. Tarantino, M. Pla-Roca, P. Prado, F. Fernández-Avilés, J.M. Campistol, J. Samitier, N. Montserrat, Mater. Today 20 (2017) 166-178.
DOI URL |
[15] | Y. Hashimoto, S. Funamoto, T. Kimura, K. Nam, T. Fujisato, A. Kishida, Biomate-rials 32 (2011) 7060-7067. |
[16] |
X. Wang, Z. Chen, B. Zhou, X. Duan, W. Weng, K. Cheng, H. Wang, J. Lin, ACS Appl. Mater. Interfaces 10 (2018) 11508-11518.
DOI URL |
[17] |
F.J. O’Brien, Mater. Today 14 (2011) 88-95.
DOI URL |
[18] |
L. Yuan, S. Ding, C. Wen, Bioact. Mater. 4 (2019) 56-70.
DOI PMID |
[19] | J. Li, S. Wang, Y. Sheng, C. Liu, Z. Xue, P. Tong, S. Guan, Smart Mater. Med. 2 (2021) 124-133. |
[20] | D. Zhang, Q. Chen, C. Shi, M. Chen, K. Ma, J. Wan, R. Liu, Adv. Funct. Mater. 31 (2021) 2007226. |
[21] |
B. Saif, P. Yang, ACS Appl. Bio Mater. 4 (2021) 1156-1177.
DOI URL |
[22] | L. Yu, Y. Hou, W. Xie, J.L. Cuellar-Camacho, Q. Wei, R. Haag, Adv. Mater. 32 (2020) 2006986. |
[23] | L. Yu, Y. Hou, W. Xie, J.L.C. Camacho, C. Cheng, A. Holle, J. Young, B. Trappmann, W. Zhao, M.F. Melzig, E.A. Cavalcanti-Adam, C. Zhao, J.P. Spatz, Q. Wei, R. Haag, Adv. Mater. 32 (2020) 2002566. |
[24] | W. Liu, Q. Sun, Z.L. Zheng, Y.T. Gao, G.Y. Zhu, Q. Wei, J.Z. Xu, Z.M. Li, C.S. Zhao, Small (2021) 2104328. |
[25] |
M. Zhang, Q. Sun, Y. Liu, Z. Chu, L. Yu, Y. Hou, H. Kang, Q. Wei, W. Zhao, J.P. Spatz, C. Zhao, E.A. Cavalcanti-Adam, Biomaterials 268 (2021) 120543.
DOI URL |
[26] | Z. Ding, X. Pan, X. Wang, H. Xie, Q. Ye, Smart Mater. Med. 2 (2021) 196-208. |
[27] |
N. Sadr, B.E. Pippenger, A. Scherberich, D. Wendt, S. Mantero, I. Martin, A. Pa-padimitropoulos, Biomaterials 33 (2012) 5085-5093.
DOI URL |
[28] |
R.J. Wade, J.A. Burdick, Mater. Today 15 (2012) 454-459.
DOI URL |
[29] |
M.C. Prewitz, F.P. Seib, M. Von Bonin, J. Friedrichs, A. Stißel, C. Niehage, K. Müller, K. Anastassiadis, C. Waskow, B. Hoflack, M. Bornhäuser, C. Werner, Nat. Methods 10 (2013) 788-794.
DOI PMID |
[30] |
P.M. Crapo, T.W. Gilbert, S.F. Badylak, Biomaterials 32 (2011) 3233-3243.
DOI URL |
[31] |
M.R. Morgan, M.J. Humphries, M.D. Bass, Nat. Rev. Mol. Cell Biol. 8 (2007) 957-969.
DOI URL |
[32] |
J.Z. Kechagia, J. Ivaska, P. Roca-Cusachs, Nat. Rev. Mol. Cell Biol. 20 (2019) 457-473.
DOI URL |
[33] |
Y. Haraguchi, T. Shimizu, T. Sasagawa, H. Sekine, K. Sakaguchi, T. Kikuchi, W. Sekine, S. Sekiya, M. Yamato, M. Umezu, T. Okano, Nat. Protoc. 7 (2012) 850-858.
DOI PMID |
[34] |
Q. Wei, T. Becherer, S. Angioletti-Uberti, J. Dzubiella, C. Wischke, A.T. Neffe, A. Lendlein, M. Ballauff, R. Haag, Angew. Chem. Int. Ed. 53 (2014) 8004-8031.
DOI URL |
[35] |
Q. Wei, R. Haag, Mater. Horiz. 2 (2015) 567-577.
DOI URL |
[36] |
K.J. Aitken, D.J. Bägli, Nat. Rev. Urol. 6 (2009) 596-611.
DOI PMID |
[37] | S. Sarrazin, D. Bonnaffé, A. Lubineau, H. Lortat-Jacob, J. Biol, Chem 280 (2005) 37558-37564. |
[38] |
L. Yu, C. Cheng, Q. Ran, C. Schlaich, P.-L.M. Noeske, W. Li, Q. Wei, R. Haag, ACS Appl. Mater. Interfaces 9 (2017) 6624-6633.
DOI URL |
[39] |
L. Yu, Y. Hou, C. Cheng, C. Schlaich, P.-L.M. Noeske, Q. Wei, R. Haag, ACS Appl. Mater. Interfaces 9 (2017) 4 4281-4 4292.
DOI URL |
[40] | J. Swift, I.L. Ivanovska, A. Buxboim, T. Harada, P. Dingal, J. Pinter, J.D. Pa-jerowski, K.R. Spinler, J.W. Shin, M. Tewari, F. Rehfeldt, D.W. Speicher, D.E. Dis-cher, Science 341 (2013) 16. |
[41] |
Q. Wei, T. Becherer, P.-L.M. Noeske, I. Grunwald, R. Haag, Adv. Mater. 26 (2014) 2688-2693.
DOI URL |
[42] |
F.M. Watt, W.T.S. Huck, Nat. Rev. Mol. Cell Biol. 14 (2013) 467-473.
DOI URL |
[43] |
H.C. Ott, T.S. Matthiesen, S.-K. Goh, L.D. Black, S.M. Kren, T.I. Netoff, D.A. Taylor, Nat. Med. 14 (2008) 213-221.
DOI URL |
[44] |
B.E. Uygun, A. Soto-Gutierrez, H. Yagi, M.-L. Izamis, M.A. Guzzardi, C. Shul-man, J. Milwid, N. Kobayashi, A. Tilles, F. Berthiaume, M. Hertl, Y. Nahmias, M.L. Yarmush, K. Uygun, Nat. Med. 16 (2010) 814-820.
DOI URL |
[45] |
T.H. Petersen, E.A. Calle, L. Zhao, E.J. Lee, L. Gui, M.B. Raredon, K. Gavrilov, T. Yi, Z.W. Zhuang, C. Breuer, E. Herzog, L.E. Niklason, Science 329 (2010) 538-541.
DOI PMID |
[46] | G.G. Giobbe, C. Crowley, C. Luni, S. Campinoti, M. Khedr, K. Kretzschmar, M.M. De Santis, E. Zambaiti, F. Michielin, L. Meran, Q. Hu, G. Van Son, L. Ur-bani, A. Manfredi, M. Giomo, S. Eaton, D. Cacchiarelli, V.S.W. Li, H. Clevers, P. Bonfanti, N. Elvassore, P. De Coppi, Nat. Commun. 10 (2019). |
[47] |
S. Nagata, R. Hanayama, K. Kawane, Cell 140 (2010) 619-630.
DOI URL |
[48] | B.N. Brown, J.E. Valentin, A.M. Stewart-Akers, G.P. McCabe, S.F. Badylak, Bioma-terials 30 (2009) 1482-1491. |
[49] |
Q. Zhang, M. Raoof, Y. Chen, Y. Sumi, T. Sursal, W. Junger, K. Brohi, K. Itagaki, C.J. Hauser, Nature 464 (2010) 104-107.
DOI URL |
[50] |
Q. Wei, A. Holle, J. Li, F. Posa, F. Biagioni, O. Croci, A.S. Benk, J. Young, F. Noureddine, J. Deng, M. Zhang, G.J. Inman, J.P. Spatz, S. Campaner, E.A. Cav-alcanti-Adam, Adv. Sci. 7 (2020) 1902931.
DOI URL |
[51] |
A. Elosegui-Artola, X. Trepat, P. Roca-Cusachs, Trends Cell Biol. 28 (2018) 356-367.
DOI PMID |
[52] | Q. Chen, D. Zhang, W. Zhang, H. Zhang, J. Zou, M. Chen, J. Li, Y. Yuan, R. Liu, Nat. Commun. 12 (2021). |
[53] |
S. Khetan, M. Guvendiren, W.R. Legant, D.M. Cohen, C.S. Chen, J.A. Burdick, Nat. Mater. 12 (2013) 458-465.
DOI URL |
[54] | T. Shemesh, B. Geiger, A.D. Bershadsky, M.M. Kozlov, Proc. Natl. Acad. Sci. U. S. A 102 (2005) 12383-12388. |
[55] |
A. Elosegui-Artola, R. Oria, Y. Chen, A. Kosmalska, C. Pérez-González, N. Castro, C. Zhu, X. Trepat, P. Roca-Cusachs, Nat. Cell Biol. 18 (2016) 540-548.
DOI PMID |
[56] |
H. Wolfenson, B. Yang, M.P. Sheetz, Annu. Rev. Physiol. 81 (2019) 585- 605.
DOI PMID |
[57] |
K. Nakashima, X. Zhou, G. Kunkel, Z. Zhang, J.M. Deng, R.R. Behringer, B. de Crombrugghe, Cell 108 (2002) 17-29.
DOI PMID |
[58] |
T. Watabe, K. Miyazono, Cell Res. 19 (2009) 103-115.
DOI URL |
[59] |
Q. Zeng, X. Li, G. Beck, G. Balian, F.H. Shen, Bone 40 (2007) 374-381.
DOI URL |
[60] |
R. D’Aquino, A. Graziano, M. Sampaolesi, G. Laino, G. Pirozzi, A. De Rosa, G. Pa-paccio, Cell Death Differ 14 (2007) 1162-1171.
DOI URL |
[61] |
R.L. Huang, Y. Yuan, J. Tu, G.M. Zou, Q. Li, Cell Death Dis. 5 (2014) e1187.
DOI PMID |
[62] |
X. Li, S. Pongkitwitoon, H. Lu, C. Lee, R. Gelberman, S. Thomopoulos, J. Orthop. Res. 37 (2019) 574-582.
DOI URL |
[63] |
N. Ferrara, H.-P. Gerber, J. Lecouter, Nat. Med. 9 (2003) 669-676.
DOI URL |
[64] | Z. Wu, P. Yang, Adv. Mater. Interfaces 2 (2015) 1400401. |
[65] |
P. Yang, W. Yang, Chem. Rev. 113 (2013) 5547-5594.
DOI URL |
[66] | M. Zhang, C. Li, S. Yang, J. Hirte, W. Zhao, Q. Wei, Z. Diao, J.P. Spatz, C. Zhao, Smart Mater. Med. 2 (2021) 38-45. |
[1] | Kyubae Lee, Yazhou Chen, Xiaomeng Li, Naoki Kawazoe, Yingnan Yang, Guoping Chen. Influence of viscosity on chondrogenic differentiation of mesenchymal stem cells during 3D culture in viscous gelatin solution-embedded hydrogels [J]. J. Mater. Sci. Technol., 2021, 63(0): 1-8. |
[2] | Erica Rosella, Nan Jia, Diego Mantovani, Jesse Greener. A microfluidic approach for development of hybrid collagen-chitosan extracellular matrix-like membranes for on-chip cell cultures [J]. J. Mater. Sci. Technol., 2021, 63(0): 54-61. |
[3] | Tzu-Cheng Sung, Chao-Wen Heish, Henry Hsin-Chung Lee, Jhe-Yu Hsu, Chun-Ko Wang, Jia-Hua Wang, Yu-Ru Zhu, Shih-Hsi Jen, Shih-Tien Hsu, Abdurahman H. Hirad, Abdullah A. Alarfaj, Akon Higuchi. 3D culturing of human adipose-derived stem cells enhances their pluripotency and differentiation abilities [J]. J. Mater. Sci. Technol., 2021, 63(0): 9-17. |
[4] | Davide Porrelli, Mario Mardirossian, Nicola Crapisi, Marco Urban, Nicola Andrea Ulian, Lorenzo Bevilacqua, Gianluca Turco, Michele Maglione. Polyetheretherketone and titanium surface treatments to modify roughness and wettability - Improvement of bioactivity and antibacterial properties [J]. J. Mater. Sci. Technol., 2021, 95(0): 213-224. |
[5] | Kaur Tejinder, Thirugnanam Arunachalam. Effect of Porous Activated Charcoal Reinforcement on Mechanical and In-Vitro Biological Properties of Polyvinyl Alcohol Composite Scaffolds [J]. J. Mater. Sci. Technol., 2017, 33(7): 734-743. |
[6] | Xu Shao,Zhou Zhiyu,Gao Manman,Zou Changye,Che Yinglin,Cody Bünger,Zou Xuenong,Zhou Lei. Bioadaptive Nanorod Topography of Titanium Surface to Control Cell Behaviors and Osteogenic Differentiation of Preosteoblast Cells [J]. J. Mater. Sci. Technol., 2016, 32(9): 944-949. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||