J. Mater. Sci. Technol. ›› 2022, Vol. 130: 35-43.DOI: 10.1016/j.jmst.2022.04.048
• Research Article • Previous Articles Next Articles
Yongliang Lia, Haoxuan Sunb,*(), Zhen Lia, Min Wangb, Linqi Guob, Liangliang Minb, Fengren Caob, Yeqiang Tana,*(
), Liang Lib,*(
)
Received:
2022-01-05
Revised:
2022-03-27
Accepted:
2022-04-18
Published:
2022-12-10
Online:
2022-12-07
Contact:
Haoxuan Sun,Yeqiang Tan,Liang Li
About author:
E-mail addresses:lli@suda.edu.cn (L. Li)Yongliang Li, Haoxuan Sun, Zhen Li, Min Wang, Linqi Guo, Liangliang Min, Fengren Cao, Yeqiang Tan, Liang Li. Electrospun perovskite nano-network for flexible, near-room temperature, environmentally friendly and ultrastable light regulation[J]. J. Mater. Sci. Technol., 2022, 130: 35-43.
Fig. 1. The preparation route and device morphology. (a) Schematic illustration of the flexible perovskite nano-network fabrication process. (b) Schematic illustration of the perovskite film fabrication process. (c) Digital photo of the perovskite color shift. Top-view SEM images of (d) the perovskite nano-network and (e) the perovskite film.
Fig. 2. The materials characterization during color transition. (a) Schematic diagram of the transition process between hydration and dehydration. (b) XRD patterns of the perovskite nano-network with a phase transition from the bleached state to the colored state. (c) Clausius-Clapeyron diagram describing the pressure-temperature dependence. (d) Transmittance spectrum of the perovskite nano-network and film in different states. (e) Temperature-dependent thermochromic hysteresis loops of the coloring and bleaching processes.
Fig. 3. Pb concentration in the contaminated water. (a) Quick Pb leakage exam using testing paper for the perovskite nano-network, perovskite film and PbI2 film. Quantitative tests of Pb leakage with dripping (orange), soaking (blue) or ultrasonication pre-treatment (purple) for the (b) perovskite nano-network and (c) perovskite film.
Fig. 4. Lead adsorption mechanism of SA. (a) FTIR spectra of original SA and SA-Pb. (b) Schematic illustration of Pb2+ absorption via the G segment and the M segment. (c) Comparison of the Pb absorption ability of SA at various G/M ratios under different pH conditions.
Fig. 5. The demonstration and evaluation of practical application. (a) Schematic of the model building. Temperature-time/solar irradiance diagrams of the (b) control FTO glass, (c) perovskite film and (d) nano-network. (e) Stability test switching between the colored state and the bleached state (The inset shows the corresponding optical images after the cyclic test).
[1] |
S. Erbas-Cakmak, S. Kolemen, A.C. Sedgwick, T. Gunnlaugsson, T.D. James, J. Yoon, E.U. Akkaya, Chem. Soc. Rev. 47 (2018) 2228-2248.
DOI PMID |
[2] | C.M. Lampert, Mater. Today 7 (2004) 28-35. |
[3] |
Y. Wang, E.L. Runnerstrom, D.J. Milliron, Annu. Rev. Chem. Biomol. Eng. 7 (2016) 283-304.
DOI URL |
[4] |
A.A. Zhumekenov, M.I. Saidaminov, O.F. Mohammed, O.M. Bakr, Joule 5 (2021) 2027-2046.
DOI URL |
[5] |
Q. Xue, R. Xia, C.J. Brabec, H.L. Yip, Energy Environ. Sci. 11 (2018) 1688-1709.
DOI URL |
[6] |
Y. Cui, Y. Ke, C. Liu, Z. Chen, N. Wang, L. Zhang, Y. Zhou, S. Wang, Y. Gao, Y. Long, Joule 2 (2018) 1707-1746.
DOI URL |
[7] |
Y. Zhou, S. Wang, J. Peng, Y. Tan, C. Li, F.Y.C. Boey, Y. Long, Joule 4 (2020) 2458-2474.
DOI URL |
[8] |
I. Cherniukh, G. Raino, T. Stoferle, M. Burian, A. Travesset, D. Naumenko, H. Amenitsch, R. Erni, R.F. Mahrt, M.I. Bodnarchuk, M.V. Kovalenko, Nature 593 (2021) 535-542.
DOI URL |
[9] |
Y. Hassan, J.H. Park, M.L. Crawford, A. Sadhanala, J. Lee, J.C. Sadighian, E. Mosconi, R. Shivanna, E. Radicchi, M. Jeong, C. Yang, H. Choi, S.H. Park, M.H. Song, F. De Angelis, C.Y. Wong, R.H. Friend, B.R. Lee, H.J. Snaith, Nature 591 (2021) 72-77.
DOI URL |
[10] |
H. Sun, W. Tian, X. Wang, K. Deng, J. Xiong, L. Li, Adv. Mater. 32 (2020) 1908108.
DOI URL |
[11] |
B.A. Rosales, L.E. Mundt, T.G. Allen, D.T. Moore, K.J. Prince, C.A. Wolden, G. Rumbles, L.T. Schelhas, L.M. Wheeler, Nat. Commun. 11 (2020) 5234.
DOI PMID |
[12] |
J.A. Christians P.A. Miranda Herrera, P.V. Kamat, J. Am. Chem. Soc. 137 (2015) 1530-1538.
DOI PMID |
[13] |
X. Yu, L. Wu, D. Yang, M. Cao, X. Fan, H. Lin, Q. Zhong, Y. Xu, Q. Zhang, Angew. Chem. Int. Ed. 59 (2020) 14527-14532.
DOI URL |
[14] |
J. Lin, M. Lai, L. Dou, C.S. Kley, H. Chen, F. Peng, J. Sun, D. Lu, S.A. Hawks, C. Xie, F. Cui, A.P. Alivisatos, D.T. Limmer, P. Yang, Nat. Mater. 17 (2018) 261-267.
DOI URL |
[15] |
L.M. Wheeler, D.T. Moore, R. Ihly, N.J. Stanton, E.M. Miller, R.C. Tenent, J.L. Blackburn, N.R. Neale, Nat. Commun. 8 (2017) 1722.
DOI PMID |
[16] |
S. Liu, Y.W. Du, C.Y. Tso, H.H. Lee, R. Cheng, S.P. Feng, K.M. Yu, Adv. Funct. Mater. 31 (2021) 2010426.
DOI URL |
[17] |
F. Huang, M. Li, P. Siffalovic, G. Cao, J. Tian, Energy Environ. Sci. 12 (2019) 518-549.
DOI URL |
[18] |
L.J. Xu, H. Lin, S. Lee, C. Zhou, M. Worku, M. Chaaban, Q. He, A. Plaviak, X. Lin, B. Chen, M.H. Du, B. Ma, Chem. Mater. 32 (2020) 4692-4698.
DOI URL |
[19] | X. Song, G. Hodes, K. Zhao, S. Liu, Adv. Energy Mater. 11 (2021) 2003331. |
[20] |
W. Ke, M.G. Kanatzidis, Nat. Commun. 10 (2019) 965.
DOI URL |
[21] |
P.V. Kamat, J. Bisquert, J. Buriak, ACS Energy Lett. 2 (2017) 904-905.
DOI URL |
[22] | E. Jokar, C.H. Chien, C.M. Tsai, A. Fathi, E.W. Diau, Adv. Mater. 31 (2019) 1804835. |
[23] |
H.Y. Ye, Y.Y. Tang, P.F. Li, W.Q. Liao, J.X. Gao, X.N. Hua, H. Cai, P.P. Shi, Y.M. You, R.G. Xiong, Science 361 (2018) 151-155.
DOI URL |
[24] |
C.N. Savory, A. Walsh, D.O. Scanlon, ACS Energy Lett. 1 (2016) 949-955.
DOI URL |
[25] |
S. Wu, Z. Li, M.Q. Li, Y. Diao, F. Lin, T. Liu, J. Zhang, P. Tieu, W. Gao, F. Qi, X. Pan, Z. Xu, Z. Zhu, A.K. Jen, Nat. Nanotechnol. 15 (2020) 934-940.
DOI URL |
[26] |
X. Li, F. Zhang, H. He, J.J. Berry, K. Zhu, T. Xu, Nature 578 (2020) 555-558.
DOI URL |
[27] |
S. Chen, Y. Deng, H. Gu, S. Xu, S. Wang, Z. Yu, V. Blum, J. Huang, Nat. Energy 5 (2020) 1003-1011.
DOI URL |
[28] |
Y. Jiang, L. Qiu, E.J. Juarez-Perez, L.K. Ono, Z. Hu, Z. Liu, Z. Wu, L. Meng, Q. Wang, Y. Qi, Nat. Energy 4 (2019) 585-593.
DOI |
[29] |
X. Dou, T. Zhu, Z. Wang, W. Sun, Y. Lai, K. Sui, Y. Tan, Y. Zhang, W.Z. Yuan, Adv. Mater. 32 (2020) 2004768.
DOI URL |
[30] |
Y. Wang, Y. Yu, Y. Tan, T. Li, Y. Chen, S. Wang, K. Sui, H. Zhang, Y. Luo, X. Li, Adv. Energy Mater. 10 (2019) 1903233.
DOI URL |
[31] |
Q. Wang, J. Ju, Y. Tan, L. Hao, Y. Ma, Y. Wu, H. Zhang, Y. Xia, K. Sui, Carbohydr. Polym. 205 (2019) 125-134.
DOI URL |
[32] |
Y. Ma, P. Qi, J. Ju, Q. Wang, L. Hao, R. Wang, K. Sui, Y. Tan, Compos. Part B-Eng. 162 (2019) 671-677.
DOI URL |
[33] |
X. Dou, Q. Zhou, X. Chen, Y. Tan, X. He, P. Lu, K. Sui, B.Z. Tang, Y. Zhang, W.Z. Yuan, Biomacromolecules 19 (2018) 2014-2022.
DOI URL |
[34] | T. Schleeh, M. Madau, D. Roessner, Carbohydr. Polym. 114 (2014) 4 93-4 99. |
[35] | X. Dou, Q. Wang, Z. Li, J. Ju, S. Wang, L. Hao, K. Sui, Y. Xia, Y. Tan, Adv. Funct. Mater. 29 (2019) 1905610. |
[36] | X. Xiao, M. Wang, S. Chen, Y. Zhang, H. Gu, Y. Deng, G. Yang, C. Fei, B. Chen, Y. Lin, M.D. Dickey, J. Huang, Sci. Adv. 7 (2021) eabi8249. |
[37] |
Y. Zhang, C.Y. Tso, J.S. Iñigo, S. Liu, H. Miyazaki, C.Y.H. Chao, K.M. Yu, Appl. Energy 254 (2019) 113690.
DOI URL |
[38] |
J.M. Frost, K.T. Butler, F. Brivio, C.H. Hendon, M. van Schilfgaarde, A. Walsh, Nano Lett. 14 (2014) 2584-2590.
DOI URL |
[39] | W. Tian, L. Min, F. Cao, L. Li, Adv. Mater. 32 (2020) 1906974. |
[40] | X. Hu, W. Xu, L. Zhou, Y. Tan, Y. Wang, S. Zhu, J. Zhu, Adv. Mater. 29 (2017) 1604031. |
[41] |
J.H. Bang, K.S. Suslick, Adv. Mater. 22 (2010) 1039-1059.
DOI URL |
[42] |
S.K. Papageorgiou, E.P. Kouvelos, E.P. Favvas, A.A. Sapalidis, G.E. Romanos, F.K. Katsaros, Carbohydr. Res. 345 (2010) 469-473.
DOI URL |
[43] |
H. Diehl, Chem. Rev. 21 (1937) 39-111.
DOI URL |
[1] | Cecil Cherian Lukose, Guillaume Zoppi, Martin Birkett. Mn3Ag(1-x)Cu(x)N antiperovskite thin films with ultra-low temperature coefficient of resistance [J]. J. Mater. Sci. Technol., 2022, 99(0): 138-147. |
[2] | Junjie Wang, Zongde Kou, Shu Fu, Shangshu Wu, Sinan Liu, Mengyang Yan, Zhiqiang Ren, Di Wang, Zesheng You, Si Lan, Horst Hahn, Xun-Li Wang, Tao Feng. Ultrahard BCC-AlCoCrFeNi bulk nanocrystalline high-entropy alloy formed by nanoscale diffusion-induced phase transition [J]. J. Mater. Sci. Technol., 2022, 115(0): 29-39. |
[3] | In Su Jin, Bhaskar Parida, Jae Woong Jung. Simultaneously enhanced efficiency and ambient stability of inorganic perovskite solar cells by employing tetramethylammonium chloride additive in CsPbI2Br [J]. J. Mater. Sci. Technol., 2022, 102(0): 224-231. |
[4] | Zhengran Chen, Ruihong Liang, Chi Zhang, Zhiyong Zhou, Yuchen Li, Zhenming Liu, Xianlin Dong. High-performance and high-thermally stable PSN-PZT piezoelectric ceramics achieved by high-temperature poling [J]. J. Mater. Sci. Technol., 2022, 116(0): 238-245. |
[5] | Huimin Xiang, Pengyun Liu, Wei Wang, Ran Ran, Wei Zhou, Zongping Shao. Sodium fluoride sacrificing layer concept enables high-efficiency and stable methylammonium lead iodide perovskite solar cells [J]. J. Mater. Sci. Technol., 2022, 113(0): 138-146. |
[6] | Chen Chen, Yanzhou Fan, Wei Wang, Hang Zhang, Jialiang Hou, Ran Wei, Tao Zhang, Tan Wang, Mo Li, Shaokang Guan, Fushan Li. Synthesis of ultrafine dual-phase structure in CrFeCoNiAl0.6 high entropy alloy via solid-state phase transformation during sub-rapid solidification [J]. J. Mater. Sci. Technol., 2022, 113(0): 253-260. |
[7] | Lili Zhu, Bingbing Yang, Ziqiang Wu, Changdian Li, Han Li, Hui Li, Yanan Huang, Xiaoguang Zhu, Xuebin Zhu, Yuping Sun. Metal/antiperovskite metal nitride composites Ag/AgNNi3 as novel efficient electrocatalysts for hydrogen evolution reaction in alkaline media [J]. J. Mater. Sci. Technol., 2022, 112(0): 222-229. |
[8] | Jing Li, Fan Yang, Yunzhu Du, Xiyang Cai, Qiaodan Hu, Junliang Zhang. Bi0.15Sr0.85Co0.8Fe0.2O3-δ perovskite: A novel bifunctional oxygen electrocatalyst with superior durability in alkaline media [J]. J. Mater. Sci. Technol., 2022, 108(0): 158-163. |
[9] | Jia Liu, Cuiying Ma, Lianli Wang, Ke Ren, Hongpei Ran, Danni Feng, Huiling Du, Yiguang Wang. Single-phase formation mechanism and dielectric properties of sol-gel-derived Ba(Ti0.2Zr0.2Sn0.2Hf0.2Ce0.2)O3 high-entropy ceramics [J]. J. Mater. Sci. Technol., 2022, 130(0): 103-111. |
[10] | Fan Wang, Weihua Gu, Jiabin Chen, Qianqian Huang, Mingyang Han, Gehuan Wang, Guangbin Ji. Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption [J]. J. Mater. Sci. Technol., 2022, 105(0): 92-100. |
[11] | J. Ding, A. Inoue, F.L. Kong, S.L. Zhu, Y.L. Pu, E. Shalaan, A.A. Al-Ghamdi, A.L. Greer. Novel heating-and deformation-induced phase transitions and mechanical properties for multicomponent Zr50M50, Zr50(M,Ag)50 and Zr50(M,Pd)50 (M = Fe,Co,Ni,Cu) amorphous alloys [J]. J. Mater. Sci. Technol., 2022, 104(0): 109-118. |
[12] | Yang Zhao, Yameng Zhu, Jinpeng Zhu, Hailong Wang, Zhuang Ma, Lihong Gao, Yanbo Liu, Kaijun Yang, Yongchun Shu, Jilin He. Atomic-resolution investigation of structural transformation caused by oxygen vacancy in La0.9Sr0.1TiO3+δ titanate layer perovskite ceramics [J]. J. Mater. Sci. Technol., 2022, 104(0): 172-182. |
[13] | Akshay Kumar, Kavita Kumari, Mohit K. Sharma, Ankush Vij, Shalendra Kumar, Seok-Hwan Huh, Bon Heun Koo. Chemically inducing room temperature spin-crossover in double layered magnetic refrigerants Pr1.4+xSr1.6-xMn2O7 (0.0 ≤ x ≤ 0.5) [J]. J. Mater. Sci. Technol., 2022, 124(0): 232-242. |
[14] | Xiang He, Min Wang, Fengren Cao, Wei Tian, Liang Li. Hydrophobic long alkyl chain organic cations induced 2D/3D heterojunction for efficient and stable perovskite solar cells [J]. J. Mater. Sci. Technol., 2022, 124(0): 243-251. |
[15] | Shu Fu, Sinan Liu, Jiacheng Ge, Junjie Wang, Huiqiang Ying, Shangshu Wu, Mengyang Yan, Li Zhu, Yubin Ke, Junhua Luan, Yang Ren, Xiaobing Zuo, Zhenduo Wu, Zhen Peng, Chain-Tsuan Liu, Xun-Li Wang, Tao Feng, Si Lan. In situ study on medium-range order evolution during the polyamorphous phase transition in a Pd-Ni-P nanostructured glass [J]. J. Mater. Sci. Technol., 2022, 125(0): 145-156. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||