J. Mater. Sci. Technol. ›› 2022, Vol. 124: 232-242.DOI: 10.1016/j.jmst.2022.01.035
• Research Article • Previous Articles Next Articles
Akshay Kumara, Kavita Kumarib, Mohit K. Sharmab, Ankush Vijc, Shalendra Kumarc,d, Seok-Hwan Huha, Bon Heun Kooa,b,*()
Received:
2021-08-27
Revised:
2021-11-28
Accepted:
2022-01-10
Published:
2022-10-10
Online:
2022-04-09
Contact:
Bon Heun Koo
About author:
∗E-mail address:. bhkoo@changwon.ac.kr (B.H. Koo)Akshay Kumar, Kavita Kumari, Mohit K. Sharma, Ankush Vij, Shalendra Kumar, Seok-Hwan Huh, Bon Heun Koo. Chemically inducing room temperature spin-crossover in double layered magnetic refrigerants Pr1.4+xSr1.6-xMn2O7 (0.0 ≤ x ≤ 0.5)[J]. J. Mater. Sci. Technol., 2022, 124: 232-242.
Fig. 1. (a) The XRD profiles of PSMO indicating the reduction in the intensity of reflections corresponding to double perovskite phase and/or evolution in the reflections of single perovskite and PrO2/Pr(OH)3 phases. (b) The calculated fractions of each phase with respect to the stoichiometric concentration of Pr. As the first approximation the fractions of PrO2 + Pr(OH)3 has been considered in a single unit.
Contents | x = 0.0 | x = 0.1 | x = 0.2 | x = 0.3 | x = 0.4 | x = 0.5 |
---|---|---|---|---|---|---|
Tetragonal (R-P phase) unit cell parameters (Å) a = b; ≠ c | 3.85031; 20.12910 | 3.85094; 20.12841 | 3.85034; 20.12300 | 3.84981; 20.09710 | 3.84966; 20.07420 | 3.84997; 20.10020 |
Unit cell volume (Å3) | 298.41166 | 298.49892 | 298.32582 | 297.85983 | 297.49726 | 297.9365 |
Mn-O(1) (Å) | 1.97748 | 1.99212 | 1.98272 | 2.01413 | 1.97008 | 1.97488 |
Mn-O(2) (Å) | 1.6057 | 1.68757 | 1.73943 | 1.81738 | 1.66435 | 1.50051 |
Mn-O(3) (Å) | 1.92565 | 1.92573 | 1.92758 | 1.93367 | 1.92756 | 1.9271 |
O(3)-Mn-O(3) (Å) | 177.4124 | 176.1314 | 174.2674 | 169.086 | 173.8989 | 174.6314 |
χ2 | 3.27 | 2.56 | 2.15 | 2.69 | 2.54 | 2.04 |
Rwp | 11.2 | 8.9 | 9.43 | 10.6 | 10.2 | 9.22 |
Rp | 13.1 | 10.4 | 10.9 | 11.6 | 10.7 | 10.1 |
RF | 3.6 | 2.95 | 2.67 | 2.92 | 2.85 | 2.63 |
Phase Fractions (%) | ||||||
I4/mmm (Double perovskite) | 80.73 ± 0.97 | 54.99 ± 0.57 | 32.76 ± 0.35 | 30.57 ± 0.39 | 26.88 ± 0.43 | 11.52 ± 0.17 |
Pnma (Single perovskite) | 13.2 ± 0.7 | 36.79 ± 1.07 | 48.47 ± 0.79 | 52.79 ± 0.99 | 53.13 ± 1.29 | 73.84 ± 0.89 |
PrO2/Pr(OH)3 | 6.08 ± 0.17 | 8.22 ± 0.41 | 18.77 ± 0.69 | 16.63 ± 0.50 | 19.98 ± 0.50 | 14.64 ± 0.26 |
Table 1. The agreement parameters obtained from the Rietveld refinement of XRD profiles for Pr1.4+xSr1.6-xMn2O7 (0.0 ≤ x ≤ 0.5) compounds, variation in Unit cell constants, Mn-O bonds and fractions of I4/mmm, Pnma and PrO2/Pr(OH)3 phases.
Contents | x = 0.0 | x = 0.1 | x = 0.2 | x = 0.3 | x = 0.4 | x = 0.5 |
---|---|---|---|---|---|---|
Tetragonal (R-P phase) unit cell parameters (Å) a = b; ≠ c | 3.85031; 20.12910 | 3.85094; 20.12841 | 3.85034; 20.12300 | 3.84981; 20.09710 | 3.84966; 20.07420 | 3.84997; 20.10020 |
Unit cell volume (Å3) | 298.41166 | 298.49892 | 298.32582 | 297.85983 | 297.49726 | 297.9365 |
Mn-O(1) (Å) | 1.97748 | 1.99212 | 1.98272 | 2.01413 | 1.97008 | 1.97488 |
Mn-O(2) (Å) | 1.6057 | 1.68757 | 1.73943 | 1.81738 | 1.66435 | 1.50051 |
Mn-O(3) (Å) | 1.92565 | 1.92573 | 1.92758 | 1.93367 | 1.92756 | 1.9271 |
O(3)-Mn-O(3) (Å) | 177.4124 | 176.1314 | 174.2674 | 169.086 | 173.8989 | 174.6314 |
χ2 | 3.27 | 2.56 | 2.15 | 2.69 | 2.54 | 2.04 |
Rwp | 11.2 | 8.9 | 9.43 | 10.6 | 10.2 | 9.22 |
Rp | 13.1 | 10.4 | 10.9 | 11.6 | 10.7 | 10.1 |
RF | 3.6 | 2.95 | 2.67 | 2.92 | 2.85 | 2.63 |
Phase Fractions (%) | ||||||
I4/mmm (Double perovskite) | 80.73 ± 0.97 | 54.99 ± 0.57 | 32.76 ± 0.35 | 30.57 ± 0.39 | 26.88 ± 0.43 | 11.52 ± 0.17 |
Pnma (Single perovskite) | 13.2 ± 0.7 | 36.79 ± 1.07 | 48.47 ± 0.79 | 52.79 ± 0.99 | 53.13 ± 1.29 | 73.84 ± 0.89 |
PrO2/Pr(OH)3 | 6.08 ± 0.17 | 8.22 ± 0.41 | 18.77 ± 0.69 | 16.63 ± 0.50 | 19.98 ± 0.50 | 14.64 ± 0.26 |
Fig. 2. HR-TEM images and electron diffraction patterns for (a, b) x = 0.0 along [001] (c) x = 0.1 along [110] and (d) x = 0.3 along [0-11] specimens, the electron diffraction dot patterns are inserted in (c, d) respectively.
Fig. 3. HR-TEM images of PSMO series for which (a) x = 0.0 (b) x = 0.1 (c) x = 0.3 and (d) x = 0.5. The stripes images shown in the lower panels were obtained through inverse fast Fourier transform (FFT), the lattice dislocations are clearly visible in each FFT images indicated with yellow. Inset of (b) is the local magnified view from the region in white square, here the lattice faults are noticeable in the form of dark stripes indicated with yellow arrows. The bilayer atomic arrangement is illustrated such that the bright dots are assigned to Pr atoms (marked as purple) and less intense dots to Sr atoms (marked as green) respectively.
Fig. 4. Schematic illustration of sintering mechanism and involvement of the three phases during the sintering process. The FESEM image corresponds to x = 0.3 compositions, here the parasitic PrO2 particles are shown through a local magnification from the top surface. In the below scheme the unit cells correspond to tetragonal (double layer), orthorhombic (single perovskite), cubic (PrO2) lattice structures.
Fig. 5. (a) The variation in the FC magnetization of the sintered compounds against the variable temperature under the presence of an applied field of 0.1 T. (b) The temperature dependency of FC-ZFC magnetization for x = 0.0, 0.2, 0.3, 0.5 samples with the presence of a 0.1T magnetic field. (c) The illustration of ZFC-FC process involving the magnetic phases of variable spin functionalities which are possibly present in/onto the microstructure.
Fig. 6. The variation in the temperature-dependent magnetoelastic Landau coefficients: (a) C1, (b) C3 and (c) C5. (d) The local magnification of C3 parameter indicating the variation from negative to positive values.
Fig. 7. The change in isothermal entropy curves derived by implementing the Maxwell equations from isothermal magnetization plots, the dotted curves in the background representing the magnetic entropy calculated from the Landau Theory. The entropy values calculated at magnetic field values 0.0 T, 0.5 T 1 T, 1.5 T, 2 T, 2.5 T for (a) x = 0.0 (b) 0.1, (c) 0.2, (d) 0.3, (e) 0.4, and (f) 0.5 samples, respectively.
Fig. 8. Comparison of the various figure of merits to assess the magnetocaloric performance of the compounds (a) variation in the magnetic entropy against the temperature and Pr-concentrations under an applied field of 2.5 T, (b) change in adiabatic temperature at 2.5 T magnetic field plotted against the variable temperature and Pr-concentrations, (c) TEC values compared at ΔTH-C = 10 K, for x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, compounds under the magnetic field from 0.0 T up to 2.5 T, (d) Relative cooling power of the prepared compounds upon the application of various magnetic field strength.
Composition | TC (K) | |ΔSM|max (J kg-1 K - 1) | µ0H (T) | RCP (J kg-1) | Ref. |
---|---|---|---|---|---|
Pr1.4Sr1.6Mn2O7 | 304 | 0.27 | 2.5 | 27 | This work |
Pr1.5Sr1.5Mn2O7 | 305 | 0.41 | 2.5 | 35 | This work |
Pr1.6Sr1.4Mn2O7 | 306 | 0.60 | 2.5 | 50 | This work |
Pr1.7Sr1.3Mn2O7 | 306 | 0.78 | 2.5 | 65 | This work |
Pr1.8Sr1.2Mn2O7 | 307 | 0.86 | 2.5 | 73 | This work |
Pr1.9Sr1.1Mn2O7 | 308 | 0.96 | 2.5 | 78 | This work |
Pr0.6Sr0.4Mn2O3 | 320 | 2.3 | 2.5 | 34.5 | [ |
(1-x)PSMO/xBTO composites | 273 | 1.86-2.89 | 2 | 38-63 | [ |
LSMO/Ta2O5 Composites | 309-318 | 0.200-0.295 | 0.5 | 18-36 | [ |
La0.7(Ba,Sr)0.3(Mn,Ga)1O3 | 300-316 | 1.02-1.27 | 2 | 71-75 | [ |
(Cu-Zn)1Fe2O4 | 143-373 | 0.77-1.27 | 3 | 36.7-37.8 | [ |
La0.8Ca0.2MnO3/La0.8K0.2MnO3 | 247 | 1.51 | 2 | 60 | [ |
R2NiMnO6 (R = rare-earths) | 86-191 | 1.1-3.1 | 2 | 24-59 | [ |
Table 2. Comparison of various magnetocaloric figure of merits of the compounds prepared in this work with the MC performance of other compounds reported in literature.
Composition | TC (K) | |ΔSM|max (J kg-1 K - 1) | µ0H (T) | RCP (J kg-1) | Ref. |
---|---|---|---|---|---|
Pr1.4Sr1.6Mn2O7 | 304 | 0.27 | 2.5 | 27 | This work |
Pr1.5Sr1.5Mn2O7 | 305 | 0.41 | 2.5 | 35 | This work |
Pr1.6Sr1.4Mn2O7 | 306 | 0.60 | 2.5 | 50 | This work |
Pr1.7Sr1.3Mn2O7 | 306 | 0.78 | 2.5 | 65 | This work |
Pr1.8Sr1.2Mn2O7 | 307 | 0.86 | 2.5 | 73 | This work |
Pr1.9Sr1.1Mn2O7 | 308 | 0.96 | 2.5 | 78 | This work |
Pr0.6Sr0.4Mn2O3 | 320 | 2.3 | 2.5 | 34.5 | [ |
(1-x)PSMO/xBTO composites | 273 | 1.86-2.89 | 2 | 38-63 | [ |
LSMO/Ta2O5 Composites | 309-318 | 0.200-0.295 | 0.5 | 18-36 | [ |
La0.7(Ba,Sr)0.3(Mn,Ga)1O3 | 300-316 | 1.02-1.27 | 2 | 71-75 | [ |
(Cu-Zn)1Fe2O4 | 143-373 | 0.77-1.27 | 3 | 36.7-37.8 | [ |
La0.8Ca0.2MnO3/La0.8K0.2MnO3 | 247 | 1.51 | 2 | 60 | [ |
R2NiMnO6 (R = rare-earths) | 86-191 | 1.1-3.1 | 2 | 24-59 | [ |
[1] |
A. Rai, S.A. Tassou, Energy Convers. Manag. 150 (2017) 914-923.
DOI URL |
[2] |
G. Venkatarathnam, S.S. Murthy, Resonance 17 (2012) 139-162.
DOI URL |
[3] |
A. Barman, S. Kar-Narayan, D. Mukherjee, Adv. Mater. Interfaces 6 (2019) 1900291.
DOI URL |
[4] |
A. Chauhan, S. Patel, R. Vaish, C. Bowen, MRS Energy Sustain 2 (2015) 16.
DOI URL |
[5] |
X. Moya, S. Kar-Narayan, N. Mathur, Nature Mater 13 (2014) 439-450.
DOI URL |
[6] |
N.A.de Oliveira, P.J.von Ranke, Phys. Rep. 489 (2010) 89-159.
DOI URL |
[7] |
J. Liu, T. Gottschall, K.P. Skokov, J.D. Moore, O. Gutfleisch, Nature Mater 11 (2012) 620-626.
DOI URL |
[8] |
V. Franco, J.S. Blázquez, B. Ingale, A. Conde, Annu. Rev. Mater. Res. 42 (2012) 305-342.
DOI URL |
[9] |
M.H. Phan, G.T. Woods, A. Chaturvedi, S. Stefanoski, G.S. Nolas, H. Srikanth, Appl. Phys. Lett. 93 (2008) 252505.
DOI URL |
[10] |
S. Das, T. Kavipriya, R. Nirmala, Mater. Res. Express 6 (2019) 084010.
DOI URL |
[11] |
H. Ucar, J.J. Ipus, V. Franco, M.E. McHenry, D.E. Laughlin, JOM 64 (2012) 782-788.
DOI URL |
[12] |
A. Waske, M.E. Gruner, T. Gottschall, O. Gutfleisch, MRS Bull 43 (2018) 269-273.
DOI URL |
[13] |
M.-.H. Phan, S.-.C. Yu, J. Magn. Magn. Mater. 308 (2007) 325-340.
DOI URL |
[14] |
K. Das, T. Paramanik, I. Das, J. Magn. Magn. Mater. 374 (2015) 707-710.
DOI URL |
[15] |
P. Sande, L.E. Hueso, D.R. Miguéns, J. Rivas, Appl. Phys. Lett. 79 (2001) 2040.
DOI URL |
[16] |
H. Fujioka, M. Kubota, K. Hirota, H. Yoshizawa, Y. Moritomo, Y. Endoh, J. Phys. Chem. Solids 60 (1999) 1165-1168.
DOI URL |
[17] |
T. Chatterji, F. Demmel, G. Dhalenne, M.A. Drouin, A. Revcolevschi, R. Surya-narayanan, Phys. Rev. B 72 (2005) 014439.
DOI URL |
[18] |
N.S.P. Bhuvanesh, J. Gopalakrishnan, J. Mater. Chem. 7 (12) (1997) 2297-2306.
DOI URL |
[19] |
R.A. Ricciardo, H.L. Cuthbert, P.M. Woodward, Q. Zhou, B.J. Kennedy, Z. Zhang, M. Avdeev, L.-.Y. Jang, Chem. Mater. 22 (11) (2010) 3369-3382.
DOI URL |
[20] |
K.H. Ahn, T.F. Seman, T. Lookman, A.R. Bishop, Phys. Rev. B 88 (2013) 144415.
DOI URL |
[21] |
J.K. Tiwari, B. Kumar, H.C. Chauhan, S. Ghosh, Sci. Rep. 11 (2021) 14117.
DOI URL |
[22] |
T. Kimura, Y. Tomioka, H. Kuwahara, A. Asamitsu, M. Tamura, Y. Tokura, Science 274 (1996) 1698-1701.
PMID |
[23] |
H. Meskine, H. König, S. Satpathy, Phys. Rev. B 64 (2001) 094433.
DOI URL |
[24] |
R. M’nassri, M.M. Nofal, P. de Rango, N. Chniba-Boudjada, RSC Adv. 9 (2019) 14916-14927.
DOI URL |
[25] |
M. Triki, R. Dhahri, M. Bekri, E. Dhahri, M.A. Valente, J. Alloys Compd. 509 (2011) 9460-9465.
DOI URL |
[26] |
M.A. Hamad, J. Adv. Ceram. 2 (3) (2013) 213-217.
DOI URL |
[27] |
H.M. Rietveld, J. Appl. Crystallogr. 2 (1969) 65.
DOI URL |
[28] |
K. Gu, J. Li, W. Ao, Y. Jian, J. Tang, J. Alloys Compd. 441 (2007) 39-42.
DOI URL |
[29] |
M.A. Green, D.A. Neumann, Chem. Mater. 12 (2000) 90-97.
DOI URL |
[30] |
Y. Zhang, J. Wang, P. Ghosez, Phys. Rev. Lett. 125 (2020) 157601.
DOI URL |
[31] |
M.J. Pitcher, P. Mandal, M.S. Dyer, J. Alaria, P. Borisov, H. Niu, J.B. Claridge, M.J. Rosseinsky, Science 347 (2015) 420-424.
DOI URL |
[32] |
S.N. Ruddlesden, P. Popper, Acta Crystallogr 11 (1958) 54.
DOI URL |
[33] |
P.D. Battle, J.A. Hepburn, J.E. Millburn, P.G. Radaelli, M.J. Rosseinsky, L.E. Spring, J.F. Vente, Chem. Mater. 9 (1997) 3215-3221.
DOI URL |
[34] |
R.D. Shannon, Acta Cryst A 32 (1976) 751-767.
DOI URL |
[35] |
N.M. Bershitskaya, M.V. Ananyev, E.K. Kurumchin, A.L. Gavrilyuk, A.A. Pankra-tov, Russ. J. Electrochem. 49 (2013) 963-974.
DOI URL |
[36] |
J.W. Stevenson, P.F. Hallman, T.R. Armstrong, L.A. Chick, J. Am. Ceram. Soc. 78 (1995) 507-512.
DOI URL |
[37] |
G.S. Upadhyaya, Mater. Chem. Phys. 67 (2001) 1-5.
DOI URL |
[38] |
Q. Zhang, Z.F. Xu, J. Liang, J. Pei, H.B. Sun, J. Magn. Magn. Mater. 354 (2014) 231-234.
DOI URL |
[39] |
Laxmi, D. Kabra, Adv. Photonics Res. 2 (2021) 2000164.
DOI URL |
[40] |
S. Zemni, M. Baazaoui, Ja. Dhahri, H. Vincent, M. Oumezzine, Mater. Lett. 63 (2009) 489-491.
DOI URL |
[41] |
S. Hcini, S. Zemni, M. Baazaoui, J. Dhahri, H. Vincent, M. Oumezzine, Solid State Sci 14 (2012) 644-649.
DOI URL |
[42] |
C.H. Gardiner, A.T. Boothroyd, S.J.S. Lister, M.J. McKelvy, S. Hull, B.H. Larsen, Appl. Phys. A 74 (2002) s1773-s1775.
DOI URL |
[43] |
A.O. Aya ¸s, M. Akyol, S.K. Çetin, M. Kaya, ˙I. Dinçer, A. Ekicibil, Y. Elerman, Philos. Mag. 97 (2017) 671-682.
DOI URL |
[44] |
R.S. Freitas, J.F. Mitchell, P. Schiffer, Phys. Rev. B 72 (2005) 144429.
DOI URL |
[45] |
F. Cugini, M. Solzi, J. Appl. Phys. 127 (2020) 123901.
DOI URL |
[46] |
F. Cugini, G. Porcari, C. Viappiani, L. Caron, A.O. dos Santos, L.P. Cardoso, E.C. Passamani, J.R.C. Proveti, S. Gama, E. Brück, M. Solzi, Appl. Phys. Lett. 108 (2016) 012407.
DOI URL |
[47] |
T. Gottschall, K.P. Skokov, R. Burriel, O. Gutfleisch, Acta Mater 107 (2016) 1-8.
DOI URL |
[48] |
K.F. Wang, Y. Wang, L.F. Wang, S. Dong, D. Li, Z.D. Zhang, H. Yu, Q.C. Li, J.-.M. Liu, Phys. Rev. B 73 (2006) 134411.
DOI URL |
[49] |
J.Y. Law, V. Franco, L.M. Moreno-Ramírez, A. Conde, D.Y. Karpenkov, I. Radulov, K.P. Skokov, O. Gutfleisch, Nat. Commun. 9 (2018) 2680.
DOI URL |
[50] | K. Morrison, L.F. Cohen, Metall. Mater. Trans. E 1 (2014) 153-159. |
[51] |
K. Gu, J. Li, W. Ao, Y. Jian, J. Tang, J. Alloys Compd. 441 (2007) 39-42.
DOI URL |
[52] | B.K. Banerjee, Phys. Lett. 12 (1964) 16-17. |
[53] |
S. Rößler, U.K. Rößler, K. Nenkov, D. Eckert, S.M. Yusuf, K. Dörr, K.-.H. Müller, Phys. Rev. B 70 (2004) 104417.
DOI URL |
[54] |
M. Balli, P. Fournier, S. Jandl, K.D. Truong, M.M. Gospodinov, J. Appl. Phys. 116 (2014) 073907.
DOI URL |
[55] |
J.S. Amaral, V.S. Amaral, J. Magn. Magn. Mater. 322 (2010) 1552-1557.
DOI URL |
[56] |
R.V. Demin, L.I. Koroleva, Phys. Lett. A 317 (2003) 140-143.
DOI URL |
[57] |
S. Chandra, A. Biswas, S. Datta, B. Ghosh, V. Siruguri, A.K. Raychaudhuri, M.H. Phan, H. Srikanth, J. Phys.: Condens. Matter 24 (2012) 366004.
DOI URL |
[58] |
L.D. Griffith, Y. Mudryk, J. Slaughter, V.K. Pecharsky, J. Appl. Phys. 123 (2018) 034902.
DOI URL |
[59] |
R. Tlili, A. Omri, M. Bekri, M. Bejar, E. Dhahri, E.K. Hlil, J. Magn. Magn. Mater. 399 (2016) 143-148.
DOI URL |
[60] |
S. Akhter, D.P. Paul, S.M. Hoque, M.A. Hakim, M. Hudl, R. Mathieu, P. Nordblad, J. Magn. Magn. Mater. 367 (2014) 75-80.
DOI URL |
[61] |
G.F. Wang, Z.R. Zhao, H.L. Li, X.F. Zhang, Ceram. Int. 41 (2015) 9035-9040.
DOI URL |
[62] |
T. Chakraborty, H. Nhalil, R. Yadav, A.A. Wagh, S. Elizabeth, J. Magn. Magn. Mater. 428 (2017) 59-63.
DOI URL |
[1] | Liliang Shao, Lin Xue, Qiang Luo, Kuibo Yin, Zirui Yuan, Mingyun Zhu, Tao Liang, Qiaoshi Zeng, Litao Sun, Baolong Shen. Heterogeneous GdTbDyCoAl high-entropy alloy with distinctive magnetocaloric effect induced by hydrogenation [J]. J. Mater. Sci. Technol., 2022, 109(0): 147-156. |
[2] | Huicai Xie, Wenxia Su, Haiming Lu, Zhaojun Mo, Dunhui Wang, Hao Sun, Lu tian, Xinqiang Gao, Zhenxing Li, Jun Shen. Enhanced low-field magnetocaloric effect in Nb and Al co-substituted EuTiO3 compounds [J]. J. Mater. Sci. Technol., 2022, 118(0): 128-135. |
[3] | He Zhou, Dekun Wang, Zhe Li, Junzhuang Cong, Ziyuan Yu, Shuo Zhao, Peng Jiang, Daoyong Cong, Xinqi Zheng, Kaiming Qiao, Hu Zhang. Large enhancement of magnetocaloric effect induced by dual regulation effects of hydrostatic pressure in Mn0.94Fe0.06NiGe compound [J]. J. Mater. Sci. Technol., 2022, 114(0): 73-80. |
[4] | Xuefei Miao, Yong Gong, Fengqi Zhang, Yurong You, Luana Caron, Fengjiao Qian, Wenhui Guo, Yujing Zhang, Yuanyuan Gong, Feng Xu, Niels van Dijk, Ekkes Brück. Enhanced reversibility of the magnetoelastic transition in (Mn,Fe)2(P,Si) alloys via minimizing the transition-induced elastic strain energy [J]. J. Mater. Sci. Technol., 2022, 103(0): 165-176. |
[5] | Weibin Cui, Guiquan Yao, Shengyu Sun, Qiang Wang, Sen Yang. Unconventional metamagnetic phase transition in R2In (R=Nd, Pr) with lambda-like specific heat and nonhysteresis [J]. J. Mater. Sci. Technol., 2022, 101(0): 80-84. |
[6] | Zhipan Ma, Xiaoshi Dong, Zhenqian Zhang, Lingwei Li. Achievement of promising cryogenic magnetocaloric performances in La1-xPrxFe12B6 compounds [J]. J. Mater. Sci. Technol., 2021, 92(0): 138-142. |
[7] | Xuanwei Zhao, Xianming Zheng, Xiaohua Luo, Fei Gao, Hai Zeng, Guang Yu, Sajjad Ur Rehman, Changcai Chen, Shengcan Ma, Weijun Ren, Zhenchen Zhong. Large magnetocaloric effect and magnetoresistance in ErNi single crystal [J]. J. Mater. Sci. Technol., 2021, 86(0): 56-63. |
[8] | Jing Bai, Die Liu, Jianglong Gu, Xinjun Jiang, Xinzeng Liang, Ziqi Guan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Excellent mechanical properties and large magnetocaloric effect of spark plasma sintered Ni-Mn-In-Co alloy [J]. J. Mater. Sci. Technol., 2021, 74(0): 46-51. |
[9] | Pengtao Cheng, Zhenjia Zhou, Jiaxing Chen, Zongbin Li, Bo Yang, Kun Xu, Zhe Li, Jun Li, Zhengming Zhang, Dunhui Wang, Suxin Qian, Youwei Du. Combining magnetocaloric and elastocaloric effects in a Ni45Co5Mn37In13 alloy [J]. J. Mater. Sci. Technol., 2021, 94(0): 47-52. |
[10] | Peng Jia, Leipeng Duan, Kang Wang, Engang Wang. Magnetic properties and magnetocaloric effects of Gd65(Cu,Co,Mn)35 amorphous ribbons [J]. J. Mater. Sci. Technol., 2019, 35(10): 2283-2287. |
[11] | Zhishuai Xu, Yuting Dai, Yue Fang, Zhiping Luo, Ke Han, Changjiang Song, Qijie Zhai, Hongxing Zheng. High-temperature phase transition behavior and magnetocaloric effect in a sub-rapidly solidified La-Fe-Si plate produced by centrifugal casting [J]. J. Mater. Sci. Technol., 2018, 34(8): 1337-1343. |
[12] | F. Wei, S. Ma, L. Yang, Y. Feng, J.Z. Wang, A. Hua, X.G. Zhao, D.Y. Geng, Z.D. Zhang. A new scale for optimized cryogenic magnetocaloric effect in ErAl2@Al2O3 nanocapsules [J]. J. Mater. Sci. Technol., 2018, 34(5): 848-854. |
[13] | Jun Li, Song Ma, Han Wang, Wenjie Gong, Jingjing Jiang, Shaojie Li, Yong Wang, Dianyu Geng, Zhidong Zhang. Enhanced Cryogenic Magnetocaloric Effect Induced by Small Size GdNi5 Nanoparticles [J]. J. Mater. Sci. Technol., 2014, 30(10): 973-978. |
[14] | Naikun Sun, Yaobiao Li, Feng Liu, Tongbo Ji. Magnetism and Magnetocaloric Properties of Mn3Zn1−xSnxC and Mn3−xCrxZnC Compounds [J]. J. Mater. Sci. Technol., 2012, 28(10): 941-945. |
[15] | Li'an Han Changle Chen. Magnetocaloric and Colossal Magnetoresistance Effect in Layered Perovskite La1:4Sr 1:6Mn2O7 [J]. J Mater Sci Technol, 2010, 26(3): 234-236. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||