J. Mater. Sci. Technol. ›› 2022, Vol. 126: 71-79.DOI: 10.1016/j.jmst.2022.04.006
Special Issue: Electronic materials 2022
• Research Article • Previous Articles Next Articles
Ga-Yeong Kima,b, Tae-Hoon Kima, Hee-Ryoung Chaa, Sang-hyub Leec, Dong-Hwan Kimc, Yang-Do Kimb,*(), Jung-Goo Leea,*(
)
Received:
2021-09-02
Revised:
2022-04-06
Accepted:
2022-04-07
Published:
2022-11-01
Online:
2022-11-10
Contact:
Yang-Do Kim,Jung-Goo Lee
About author:
jglee36@kims.re.kr (J.-G. Lee).Ga-Yeong Kim, Tae-Hoon Kim, Hee-Ryoung Cha, Sang-hyub Lee, Dong-Hwan Kim, Yang-Do Kim, Jung-Goo Lee. Texture development and grain boundary phase formation in Ce- and Ce-La-substituted Nd-Fe-B magnets during hot-deformation process[J]. J. Mater. Sci. Technol., 2022, 126: 71-79.
Fig. 1. Changes in remanence (a) and coercivity (b) of ND, CE0.3, and CELA0.3 melt-spun ribbons upon hot-press step and subsequent hot-deformation step.
Fig. 2. BSE-SEM images of hot-pressed ND (a), CE0.3 (b), and CELA0.3 (c) magnets taken from the cross-section of the samples etched by using an aqueous H2SO4 solution. The press direction is in-plane downward direction of the images as indicated by the arrow.
Fig. 3. BSE-SEM images of hot-deformed ND (a), CE0.3 (b), and CELA0.3 (c) magnets taken from the cross-section of the samples etched with an aqueous H2SO4 solution. The average grain size along c-plane (Dc) and perpendicular to c-plane (Dab), and the aspect ratio of grains (Dc/Dab) for the hot-deformed samples are summarized in (d).
Fig. 4. Gaussian fitted curves for the relative intensity versus the angle between the c-axis and the normal of (hkl) in the 2:14:1 crystal of hot-deformed ND (a), CE0.3 (b), and CELA0.3 (c) magnets. Standard deviations, σ, for the samples are displayed in the insets. Larger σ implies lower c-axis alignment of the magnets.
Fig. 5. (a) Strain-stress properties of ND (black line), CE0.3 (red line), and CELA0.3 (blue line) magnets during hot-deformation. (b) XRD patterns collected from hot-deformed CE0.3 and CELA0.3 samples pulverized into powders. (c) High-angle annular dark-field (HAADF)-STEM image and EDS elemental maps of hot-deformed CE0.3 magnets. The inverted triangles in (c) indicate the Ce-dissolved REFe2 secondary phase formed in intergranular region.
Fig. 7. Bright-field TEM images and EDS line scan profiles across the RE-rich grain boundary phases formed on the c-plane of the 2:14:1 platelets for hot-deformed CE0.3 (a) and CELA0.3 (b) magnets.
Fig. 8. Demagnetization curves for hot-deformed CE0.3 (red lines) and CELA0.3 (blue lines) magnets before (dotted lines) and after (solid lines) the I-infiltration of Nd-Cu. I-infiltration method is illustrated on the left side of the figure. I-infiltration by using 6 wt.% [NdH2 (7) + Cu (3)] powder mixture was applied to the melt-spun ribbons at 650 °C for 3 h, followed by hot-press and subsequent hot-deformation of the infiltrated ribbons.
[1] | O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, J.P. Liu, Adv. Mater., 23 (2011), pp. 821-842. |
[2] | S. Dong, W. Li, H. Chen, R. Han, AIP Adv., 7 (2017), Article 056237. |
[3] | A.K. Pathak, M. Khan, K.A. Gschneidner, R.W. McCallum, L. Zhou, K. Sun, K.W. Dennis, C. Zhou, F.E. Pinkerton, M.J. Kramer, V.K. Pecharsky, Adv. Mater., 27 (2015), pp. 2663-2667. |
[4] | A. Alam, M. Khan, R.W. McCallum, D.D. Johnson, Appl. Phys. Lett., 102 (2013), Article 042402. |
[5] | E. Niu, Z. Chen, G. Chen, Y. Zhao, J. Zhang, X. Rao, B. Hu, Z. Wang, J. Appl. Phys., 115 (2014), Article 113912. |
[6] | J.F. Herbst, Rev. Mod. Phys., 63 (1991), pp. 819-898. |
[7] | X. Fan, G. Ding, K. Chen, S. Guo, C. You, R. Chen, D. Lee, A. Yan, Acta Mater, 154 (2018), pp. 343-354. |
[8] | C. Yan, S. Guo, R. Chen, D. Lee, A. Yan, IEEE Trans. Magn., 50 (2014), pp. 1-5. |
[9] | Y. Zhang, T. Ma, J. Jin, J. Li, C. Wu, B. Shen, M. Yan, Acta Mater, 128 (2017), pp. 22-30. |
[10] | J. Jin, M. Yan, W. Chen, W. Zhang, Z. Zhang, L. Zhao, G. Bai, J. Greneche, Acta Mater, 204 (2021), Article 116529. |
[11] | X. Tang, H. Sepehri-Amin, T. Ohkubo, M. Yano, M. Ito, A. Kato, N. Sakuma, T. Shoji, T. Schrefl, K. Hono, Acta Mater, 144 (2018), pp. 884-895. |
[12] | X. Tang, S.Y. Song, J. Li, H. Sepehri-Amin, T. Ohkubo, K. Hono, Acta Mater, 190 (2020), pp. 8-15. |
[13] | X. Tang, H. Sepehri-Amin, M. Matsumoto, T. Ohkubo, K. Hono, Acta Mater, 175 (2019), pp. 1-10. |
[14] | G.Y. Kim, H.R. Cha, Y.K. Baek, Y.K. Kim, D.H. Kim, Y.D. Kim, J.G. Lee, J. Magn., 25 (2020), pp. 197-204. |
[15] | M. Zhu, W. Li, J. Wang, L. Zheng, Y. Li, K. Zhang, H. Feng, T. Liu, IEEE Trans. Magn., 50 (2014), pp. 1-4. |
[16] | T.H. Kim, S.R. Lee, S. Namkung, T.S. Jang, J. Alloy. Compd., 537 (2012), pp. 261-268. |
[17] | T.H. Kim, S.R. Lee, M.W. Lee, T.S. Jang, J.W. Kim, Y.D. Kim, H.J. Kim, Acta Mater, 66 (2014), pp. 12-21. |
[18] | R. Wang, X. Shen, Y. Liu, J. Li, IEEE Trans. Magn., 52 (2016), pp. 1-6. |
[19] | K. Hioki, Sci. Tech. Adv. Mater., 22 (2021), pp. 72-84. |
[20] | J. Jin, Y. Zhang, G. Bai, Z. Qian, C. Wu, T. Ma, B. Shen, M. Yan,Sci.Rep., 6 (2016), p. 30194. |
[21] | R. Chen, Z. Wang, X. Tang, W. Yin, C. Jin, J. Ju, D. Lee, A. Yan, Chin. Phys. B, 27 (2018), Article 117504. |
[22] | R.K. Mishra, J. Mater. Eng., 11 (1989), pp. 87-93. |
[23] | Z. Guo, M. Li, J. Wang, Z. Jing, M. Yue, M. Zhu, W. Li, AIP Adv., 8 (2018), Article 056234. |
[24] | X. Xia, M. Liu, T. Zhang, Q. Dong, L. Zhang, L. Zhou, M. Li, Mater. Charact., 168 (2020), p. 11053. |
[25] | P. Tenaud, A. Chamberod, F. Vanoni, Solid State Commun., 63 (1987), pp. 303-305. |
[26] | R. Chen, Z. Wang, X. Tang, W. Yin, C. Jin, J. Ju, D. Lee, A. Yan, Chin. Phys. B, 27 (2018), Article 117504. |
[27] | L.Z. Zhao, J.S. Zhang, G. Ahmed, X.F. Liao, Z.W. Liu, J.M. Greneche, Sci. Rep., 8 (2018), p. 6826. |
[28] | R.Q. Wang, Y. Liu, J. Li, W. Zhao, X.J. Yang, J. Mater. Sci., 52 (2017), pp. 7311-7322. |
[29] | Y. Yoshida, Y. Kasai, T. Watanabe, S. Shibata, V. Panchanathan, J.J. Croat, J. Appl. Phys., 69 (1998), p. 5841. |
[30] | W. Grünberger, D. Hinz, A. Kirchner, K.-. H. Müller, L. Schultz, J. Alloy. Compd., 257 (1997), pp. 293-301. |
[31] | R.K. Mishra, T. Chu, L.K. Rabenberg, J. Magn. Magn. Mater., 84 (1990), pp. 88-94. |
[32] | B. Hallemans, P. Wollants, J.R. Roos, J. Phase Equilib., 16 (1995), pp. 137-149. |
[33] | W. Zhang, C. Li, J. Phase Equilib., 18 (1997), pp. 301-304. |
[34] | Q.R. Yao, J.L. Xiong, P. Liu, H.Y. Zhou, G.H. Rao, J.Q. Deng, S.K. Pan, J. Wang, J. Alloy. Compd., 633 (2015), pp. 229-232. |
[35] | Q. Yao, Y. Shen, P. Yang, H. Zhou, G. Rao, J. Deng, Z. Wang, Y. Zhong, J. Rare Earth, 34 (2016), pp. 1121-1125. |
[36] | C.L. Reynolds Jr., P.R. Couchman, F.E. Karasz, Philos. Mag., 34 (1976), pp. 659-661. |
[37] | D.A. Porter, K.E. Easterling, M.Y. Sherif,Phase Transformations in Metals and Alloys(3rd ed.), CRC Press, New York (2008). |
[38] | T.T. Sasaki, T. Ohkubo, K. Hono, Acta Mater, 115 (2016), pp. 269-277. |
[39] | K. Hono, H. Sepehri-Amin, Scr. Mater., 67 (2012), pp. 530-535. |
[40] | H. Sepehri-Amin, T. Ohkubo, T. Shima, K. Hono, Acta Mater, 60 (2012), pp. 819-830. |
[41] | X.D. Xu, T.T. Sasaki, J.N. Li, Z.J. Dong, H. Sepehri-Amin, T.H. Kim, T. Ohkubo, T. Schrefl, K. Hono, Acta Mater, 156 (2018), pp. 146-157. |
[42] | A. Sakuma, T. Suzuki, T. Furuuchi, T. Shima, K. Hono, Appl. Phys. Exp., 9 (2015), Article 013002. |
[43] | T.H. Kim, S.R. Lee, K.H. Bae, H.J. Kim, M.W. Lee, T.S. Jang, Acta Mater, 133 (2017), pp. 200-207. |
[44] | J.G. Yoo, H.R. Cha, T.H. Kim, D.H. Kim, Y.D. Kim, J.G. Lee, J. Mater. Res. Technol., 14 (2021), pp. 340-347. |
[45] | H. Sepehri-Amin, T. Ohkubo, S. Nagashima, M. Yano, T. Shoji, A. Kato, T. Schrefl, K. Hono, Acta Mater, 61 (2013), pp. 6622-6634. |
[46] | H. Sepehri-Amin, T. Ohkubo, T. Nishiuchi, S. Hirosawa, K. Hono, Scr. Mater., 63 (2010), pp. 1124-1127. |
[47] | Z. Liu, J. He, Q. Zhou, Y. Huang, Q. Jiang, J. Mater. Sci. Technol., 98 (2022), pp. 51-61. |
[48] | H.R. Cha, K.W. Jeon, J.H. Yu, H.W. Kwon, Y.D. Kim, J.G. Lee, J. Alloy. Compd., 693 (2017), pp. 744-748. |
[1] | Seungchan Cho, Junghwan Kim, Ilguk Jo, Jae Hyun Park, Jaekwang Lee, Hyun-Uk Hong, Bong Ho Lee, Wook Ryol Hwang, Dong-Woo Suh, Sang-Kwan Lee, Sang-Bok Lee. Effect of molybdenum on interfacial properties of titanium carbide reinforced Fe composite [J]. J. Mater. Sci. Technol., 2022, 107(0): 252-258. |
[2] | Zhongwu Liu, Jiayi He, Qing Zhou, Youlin Huang, Qingzheng Jiang. Development of non-rare earth grain boundary modification techniques for Nd-Fe-B permanent magnets [J]. J. Mater. Sci. Technol., 2022, 98(0): 51-61. |
[3] | Chenglong Hu, Rida Zhao, Sajjad Ali, Yuanhong Wang, Shengyang Pang, Jian Li, Sufang Tang. Deposition kinetics and mechanism of pyrocarbon for electromagnetic-coupling chemical vapor infiltration process [J]. J. Mater. Sci. Technol., 2022, 101(0): 118-127. |
[4] | Mengmeng Wang, Jinshan Yang, Xiao You, Chunjing Liao, Jingyi Yan, Jing Ruan, Shaoming Dong. Nanoinfiltration behavior of carbon nanotube based nanocomposites with enhanced mechanical and electrical properties [J]. J. Mater. Sci. Technol., 2021, 71(0): 23-30. |
[5] | Chavez Juan J.Gomez, Ravisankar Naraparaju, Peter Mechnich, Klemens Kelm, Uwe Schulz, C.V. Ramana. Effects of yttria content on the CMAS infiltration resistance of yttria stabilized thermal barrier coatings system [J]. J. Mater. Sci. Technol., 2020, 43(0): 74-83. |
[6] | Xiaoyang Chen, Weijie Ni, Xiaojia Du, Zaihong Sun, Tenglong Zhu, Qin Zhong, Minfang Han. Electrochemical property of multi-layer anode supported solid oxide fuel cell fabricated through sequential tape-casting and co-firing [J]. J. Mater. Sci. Technol., 2019, 35(4): 695-701. |
[7] | , Yongsheng Liu, Mingxi Zhao, Fang Ye, Laifei Cheng. Effect of heat treatment temperature on microstructure and electromagnetic shielding properties of graphene/SiBCN composites [J]. J. Mater. Sci. Technol., 2019, 35(12): 2897-2905. |
[8] | Sree Manu K.M., Ajay Raag L., Rajan T.P.D., Pai B.C., Petley Vijay, Namdeo Verma Shweta. Self-lubricating bidirectional carbon fiber reinforced smart aluminum composites by squeeze infiltration process [J]. J. Mater. Sci. Technol., 2019, 35(11): 2559-2569. |
[9] | Larisa N. Dyachkova, Eugene E. Feldshtein. Microstructures, Strength Characteristics and Wear Behavior of the Fe-based P/M Composites after Sintering or Infiltration with Cu-Sn Alloy [J]. J. Mater. Sci. Technol., 2015, 31(12): 1226-1231. |
[10] | Yao Yantao, Chen Liqing. Processing of B4C Particulate-reinforced Magnesium-matrix Composites by Metal-assisted Melt Infiltration Technique [J]. J. Mater. Sci. Technol., 2014, 30(7): 661-665. |
[11] | Xin Yang, Zhean Su, Qizhong Huang, Xiao Fang, Liyuan Chai. Microstructure and Mechanical Properties of C/CeZrCeSiC Composites Fabricated by Reactive Melt Infiltration with Zr, Si Mixed Powders [J]. J. Mater. Sci. Technol., 2013, 29(8): 702-710. |
[12] | Quan Shan, Zulai Li, Yehua Jiang, Rong Zhou, Yudong Sui. Effect of Ni Addition on Microstructure of Matrix in Casting Tungsten Carbide Particle Reinforced Composite [J]. J. Mater. Sci. Technol., 2013, 29(8): 720-724. |
[13] | Meihui Songy Gaohui Wu Wenshu Yang Wei Jia Ziyang Xiu Guoqin Chen. Mechanical Properties of Cf/Mg Composites Fabricated by Pressure Infiltration Method [J]. J Mater Sci Technol, 2010, 26(10): 931-935. |
[14] | Hejun Li,Guozhong Xu,Kezhi Li,Chuang Wang,Wei Li,Miaoling Li. The Infiltration Process and Texture Transition of 2D C/C Composites [J]. J Mater Sci Technol, 2009, 25(01): 109-114. |
[15] | Yuan YUAN, Jianjun YI, Chenglin MA, Qinghong XU. Synthesis of Macroscopic Zr(C6H5PO3)2 Tubes [J]. J Mater Sci Technol, 2007, 23(05): 717-720. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||