J. Mater. Sci. Technol. ›› 2022, Vol. 123: 144-153.DOI: 10.1016/j.jmst.2022.01.019
• Research Article • Previous Articles Next Articles
Shuaihang Qiua,b,c, Huimin Xianga, Fu-Zhi Daia, Hailong Wangc,*(), Muzhang Huangd, Chunlei Wand, Qing Menge, Jiangtao Lie, Xiaohui Wangf, Yanchun Zhoua,*(
)
Received:
2021-11-19
Revised:
2022-01-28
Accepted:
2022-01-30
Published:
2022-10-01
Online:
2022-09-30
Contact:
Hailong Wang,Yanchun Zhou
About author:
yczhou@alum.imr.ac.cn (Y. Zhou).Shuaihang Qiu, Huimin Xiang, Fu-Zhi Dai, Hailong Wang, Muzhang Huang, Chunlei Wan, Qing Meng, Jiangtao Li, Xiaohui Wang, Yanchun Zhou. Medium-entropy (Me,Ti)0.1(Zr,Hf,Ce)0.9O2 (Me = Y and Ta): Promising thermal barrier materials for high-temperature thermal radiation shielding and CMAS blocking[J]. J. Mater. Sci. Technol., 2022, 123: 144-153.
Material | a (Å) | b (Å) | c (Å) | α = β = γ (°) | z | Symmetry | Space group | Theoretical density (g/cm3) |
---|---|---|---|---|---|---|---|---|
(Y,Ti)0.1(Zr,Hf,Ce)0.9O2 | 5.2198 | — | — | 90 | 4 | Cubic | | 7.54 |
(Ta,Ti)0.1(Zr,Hf,Ce)0.9O2 | 5.3466 | — | — | 90 | 4 | Cubic | | 7.25 |
(Ta,Ti)0.1(Zr,Hf,Ce)0.9O2 | 3.6237 | 3.6237 | 5.2340 | 90 | 2 | Tetragonal | P42/nmc [137] | 8.06 |
Table 1. Structural data of the cubic-phase ME (Y, Ti)0.1(Zr, Hf, Ce)0.9O2 and ME (Ta, Ti)0.1(Zr, Hf, Ce)0.9O2 and tetragonal-phase ME (Ta, Ti)0.1(Zr, Hf, Ce)0.9O2.
Material | a (Å) | b (Å) | c (Å) | α = β = γ (°) | z | Symmetry | Space group | Theoretical density (g/cm3) |
---|---|---|---|---|---|---|---|---|
(Y,Ti)0.1(Zr,Hf,Ce)0.9O2 | 5.2198 | — | — | 90 | 4 | Cubic | | 7.54 |
(Ta,Ti)0.1(Zr,Hf,Ce)0.9O2 | 5.3466 | — | — | 90 | 4 | Cubic | | 7.25 |
(Ta,Ti)0.1(Zr,Hf,Ce)0.9O2 | 3.6237 | 3.6237 | 5.2340 | 90 | 2 | Tetragonal | P42/nmc [137] | 8.06 |
Material | VEC | Crystal structure | Refs. |
---|---|---|---|
(Y,Ti)0.1(Zr,Hf,Ce)0.9O2 | 5.317 | Cubic | This work |
(Ta,Ti)0.1(Zr,Hf,Ce)0.9O2 | 5.350 | Tetragonal (main) | This work |
Y0.17Zr0.83O2 | 5.277 | Cubic | [ |
Y0.17Ta0.17Zr0.66O2 | 5.333 | Tetragonal | [ |
Table 2. VECs and crystal structures of ME (Y, Ti)0.1(Zr, Hf, Ce)0.9O2 and ME (Ta, Ti)0.1(Zr, Hf, Ce)0.9O2 together with those of Y0.17Zr0.83O2 and Y0.17Ta0.17Zr0.66O2.
Material | VEC | Crystal structure | Refs. |
---|---|---|---|
(Y,Ti)0.1(Zr,Hf,Ce)0.9O2 | 5.317 | Cubic | This work |
(Ta,Ti)0.1(Zr,Hf,Ce)0.9O2 | 5.350 | Tetragonal (main) | This work |
Y0.17Zr0.83O2 | 5.277 | Cubic | [ |
Y0.17Ta0.17Zr0.66O2 | 5.333 | Tetragonal | [ |
Fig. 2. SEM micrographs of the polished surface and the corresponding EDS mapping of the as-sintered (a) ME (Y, Ti)0.1(Zr, Hf, Ce)0.9O2 and (b) ME (Ta, Ti)0.1(Zr, Hf, Ce)0.9O2.
Fig. 3. (a, b) UV-Vis spectra, (c, d) (αhν)2 versus hν (Tauc) plots, and (e, f) (αhν)0.5 versus hν (Tauc) plots of ME (Y, Ti)0.1(Zr, Hf, Ce)0.9O2 and ME (Ta, Ti)0.1(Zr, Hf, Ce)0.9O2.
Fig. 4. (a) Infrared absorption spectra in the range from 1 to 2.5 μm and (b) infrared emissivity at the wavelength of 2.5 to 14 μm of ME (Y, Ti)0.1(Zr, Hf, Ce)0.9O2 and ME (Ta, Ti)0.1(Zr, Hf, Ce)0.9O2 ceramics.
Element | Atomic radius (Å) | Mass (g/mol) |
---|---|---|
Y | 1.82 | 89 |
Ta | 1.47 | 181 |
Ti | 1.47 | 48 |
Zr | 1.60 | 91 |
Hf | 1.59 | 179 |
Ce | 1.81 | 140 |
Table 3. Atomic radii and masses of different elements in ME (Y, Ti)0.1(Zr, Hf, Ce)0.9O2 and ME (Ta, Ti)0.1(Zr, Hf, Ce)0.9O2.
Element | Atomic radius (Å) | Mass (g/mol) |
---|---|---|
Y | 1.82 | 89 |
Ta | 1.47 | 181 |
Ti | 1.47 | 48 |
Zr | 1.60 | 91 |
Hf | 1.59 | 179 |
Ce | 1.81 | 140 |
Fig. 6. Thermal expansion curves of ME (Y, Ti)0.1(Zr, Hf, Ce)0.9O2 and ME (Ta, Ti)0.1(Zr, Hf, Ce)0.9O2 ceramics measured from room temperature to 1673 K.
Fig. 7. SEM images of the interfaces between the CMAS and the two ME oxides after CMAS corrosion: (a) ME (Y, Ti)0.1(Zr, Hf, Ce)0.9O2 and (b) ME (Ta, Ti)0.1(Zr, Hf, Ce)0.9O2.
Fig. 8. Line distribution of elements at the interfaces between the CMAS and the two ME oxides after CMAS corrosion: (a) ME (Y, Ti)0.1(Zr, Hf, Ce)0.9O2 and (b) ME (Ta, Ti)0.1(Zr, Hf, Ce)0.9O2.
[1] |
P.N. Padture, Science 296 (2002) 280-284.
PMID |
[2] |
A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, F.S. Pettit, Prog. Mater. Sci. 46 (2001) 505-553.
DOI URL |
[3] | D.R. Clarke, M. Oechsner, N.P. Padture, MRS Bull. 37 (2012) 891-898. |
[4] |
X.Q. Cao, R. Vassen, D. Stoever, J. Eur. Ceram. Soc. 24 (2004) 1-10.
DOI URL |
[5] |
X. Wang, H. Xiang, X. Sun, J. Liu, F. Hou, Y. Zhou, J. Mater. Res. 29 (2014) 2673-2681.
DOI URL |
[6] |
Z. Zhao, H. Xiang, F.Z. Dai, Z. Peng, Y. Zhou, J. Mater. Sci. Technol. 35 (2019) 2647-2651.
DOI URL |
[7] |
L. Chen, Y. Jiang, X. Chong, J. Feng, J. Am. Ceram. Soc. 101 (2018) 1266-1278.
DOI URL |
[8] |
Z. Zhao, H. Chen, H. Xiang, F.Z. Dai, X. Wang, W. Xu, K. Sun, Z. Peng, Y. Zhou, J. Mater. Sci. Technol. 39 (2020) 167-172.
DOI URL |
[9] |
Z. Zhao, H. Chen, H. Xiang, F.Z. Dai, X. Wang, W. Xu, K. Sun, Z. Peng, Y. Zhou, J. Adv. Ceram. 9 (2020) 303-311.
DOI URL |
[10] |
Z. Zhao, H. Chen, H. Xiang, F.Z. Dai, X. Wang, W. Xu, K. Sun, Z. Peng, Y. Zhou, J. Mater. Sci. Technol. 47 (2020) 45-51.
DOI URL |
[11] |
W. Pan, S.R. Phillpot, C. Wan, A. Chernatynskiy, Z. Qu, MRS Bull. 37 (2012) 917-922.
DOI URL |
[12] |
L. Chen, M. Hu, J. Guo, X. Chong, J. Feng, J. Mater. Sci. Technol. 52 (2020) 20-28.
DOI |
[13] |
S. Akamine, M. Fujita, J. Eur. Ceram. Soc. 34 (2014) 4031-4036.
DOI URL |
[14] |
Q. Flamant, D.R. Clarke, Scr. Mater. 173 (2019) 26-31.
DOI URL |
[15] | R. Vaßen, H. Kassner, A. Stuke, D.E. Mack, M.O.D. Jarligo, D. Stöver, Mater. Sci. Forum 631-632 (2009) 73-78. |
[16] |
M. Huang, J. Liang, P. Zhang, Y. Li, Y. Han, Z. Yang, W. Pan, C. Wan, J. Mater. Sci. Technol. 100 (2022) 67-74.
DOI URL |
[17] |
R. Siegel, C.M. Spuckler, Mater. Sci. Eng. A 245 (1998) 150-159.
DOI URL |
[18] |
J.I. Eldridge, C.M. Spuckler, J.R. Markham, J. Am. Ceram. Soc. 92 (2009) 2276-2285.
DOI URL |
[19] | M.G. Dunn, A.J. Baran, J. Miatech, in: Proceedings of the International Gas Tur- bine and Aeroengine Congress and Exposition, Hague, Netherlands 1994 June,94- GT-170. |
[20] |
C.G. Levi, J.W. Hutchinson, M.H. Vidal-Sétif, C.A. Johnson, MRS Bull. 37 (2012) 932-941.
DOI URL |
[21] |
A. Ghoshal, M. Murugan, M.J. Walock, A. Nieto, B.D. Barnett, M.S. Pepi, J.J. Swab, D. Zhu, K.A. Kerner, C.R. Rowe, C.Y. Shiao, D.A. Hopkins, G.A. Gazonas, J. Eng. Gas Turbines Power 140 (2018) 022601.
DOI URL |
[22] | A.J. Wright, C. Huang, M.J. Walock, A. Ghoshal, M. Murugan, J. Luo, J. Am. Ce- ram. Soc. 104 (2020) 448-462. |
[23] |
H. Xiang, Y. Xing, F.Z. Dai, H. Wang, L. Su, L. Miao, G. Zhang, Y. Wang, X. Qi, L. Yao, H. Wang, B. Zhao, J. Li, Y. Zhou, J. Adv. Ceram. 10 (2021) 385-441.
DOI URL |
[24] |
H. Zhu, L. Liu, H. Xiang, F.Z. Dai, X. Wang, Z. Ma, Y. Liu, Y. Zhou, J. Mater. Sci. Technol. 104 (2022) 131-144.
DOI URL |
[25] |
Y. Sun, H. Xiang, F.Z. Dai, X. Wang, Y. Xing, X. Zhao, Y. Zhou, J. Adv. Ceram. 10 (2021) 596-613.
DOI URL |
[26] |
L. Sun, Y. Luo, Z. Tian, T. Du, X. Ren, J. Li, W. Hu, J. Zhang, J. Wang, Corros. Sci. 175 (2020) 108881.
DOI URL |
[27] |
G. Zhang, I. Milisavljevic, K. Grzeszkiewicz, P. Stachowiak, D. Hreniak, Y. Wu, J. Eur. Ceram. Soc. 41 (2021) 3621-3628.
DOI URL |
[28] |
S. Qiu, M. Li, G. Shao, H. Wang, J. Zhu, W. Liu, B. Fan, H. Xu, H. Lu, Y. Zhou, R. Zhang, J. Mater. Sci. Technol. 65 (2021) 82-88.
DOI URL |
[29] |
S. Zhou, Y. Pu, Q. Zhang, R. Shi, X. Guo, W. Wang, J. Ji, T. Wei, T. Ouyang, Ceram. Int. 46 (2020) 7430-7437.
DOI URL |
[30] |
Z. Zhao, H. Xiang, H. Chen, F.Z. Dai, X. Wang, Z. Peng, Y. Zhou, J. Adv. Ceram. 9 (2020) 595-605.
DOI URL |
[31] |
P. Zhao, J. Zhu, Y. Zhang, G. Shao, H. Wang, M. Li, W. Liu, B. Fan, H. Xu, H. Lu, Y. Zhou, R. Zhang, Ceram. Int. 46 (2020) 26626-26631.
DOI URL |
[32] |
L. Sun, Y. Luo, X. Ren, Z. Gao, T. Du, Z. Wu, J. Wang, Mater. Res. Lett. 8 (2020) 424-430.
DOI URL |
[33] |
H. Chen, Z. Zhao, H. Xiang, F.Z. Dai, W. Xu, K. Sun, J. Liu, Y. Zhou, J. Mater. Sci. Technol. 48 (2020) 57-62.
DOI URL |
[34] | H. Chen, B. Zhao, Z. Zhao, H. Xiang, F.Z. Dai, J. Liu, Y. Zhou, J. Mater. Sci. Tech- nol. 47 (2020) 216-222. |
[35] |
Y. Pu, Q. Zhang, R. Li, M. Chen, X. Du, S. Zhou, Appl. Phys. Lett. 115 (2019) 223901.
DOI URL |
[36] |
J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu, M.C. Quinn, W.M. Mellor, N. Zhou, K. Vecchio, J. Luo, Sci. Rep. 6 (2016) 37946.
DOI URL |
[37] |
J. Gu, J. Zou, S.K. Sun, H. Wang, S.Y. Yu, J. Zhang, W. Wang, Z. Fu, Sci. China Mater. 62 (2019) 1898-1909.
DOI URL |
[38] |
S. Qiu, H. Xiang, F.Z. Dai, H. Wang, Y. Zhou, Corros. Commun. 3 (2022) 10-22.
DOI URL |
[39] |
D. Song, J. Kim, G. Lyu, J. Pyeon, H.B. Jeon, Y.S. Oh, T. Song, U. Paik, Y.G. Jung, J. Alloy. Compd. 883 (2021) 160848.
DOI URL |
[40] |
J. Zhang, H. Bai, W. Wei, Y. Ding, X. Zhang, H. Yuan, Z. Zhang, J. Alloy. Compd. 787 (2019) 638-648.
DOI |
[41] |
A. Sarkar, C. Loho, L. Velasco, T. Thomas, S.S. Bhattacharya, H. Hahn, R. Dje- nadic, Dalton Trans. 46 (2017) 12167-12176.
DOI URL |
[42] |
R. López, R. Gómez, J. Sol Gel Sci. Technol. 61 (2011) 1-7.
DOI URL |
[43] |
L. Jin, Q. Yu, A. Rauf, C. Zhou, Solid State Sci. 14 (2012) 106-110.
DOI URL |
[44] |
A. Sarkar, B. Eggert, L. Velasco, X. Mu, J. Lill, K. Ollefs, S.S. Bhattacharya, H. Wende, R. Kruk, R.A. Brand, H. Hahn, APL Mater. 8 (2020) 051111.
DOI URL |
[45] |
J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15 (1966) 627-637.
DOI URL |
[46] |
J. Leitner, P. Vo ˇnka, D. Sedmidubský, P. Svoboda, Thermochim. Acta 497 (2010) 7-13.
DOI URL |
[47] | M. Binnewies, E. Milke, Thermochemical Data of Elements and Compounds, Second, Revised and Extended Edition, VCH, 2002. |
[48] |
Y.A. Landa, Y.A. Polonskii, B.S. Glazachev, T.V. Milovidova, Refractories 15 (1974) 86-88.
DOI URL |
[49] |
F. Wang, L. Guo, C. Wang, F. Ye, J. Eur. Ceram. Soc. 37 (2017) 289-296.
DOI URL |
[50] |
F. Tian, L.K. Varga, N. Chen, J. Shen, L. Vitos, Intermetallics 58 (2015) 1-6.
DOI URL |
[51] |
D. Wu, Y. Yao, X. Shan, F. Yang, X. Zhao, P. Xiao, J. Am. Ceram. Soc. 104 (2020) 1132-1145.
DOI URL |
[52] |
L. Liu, S. Zhang, Z. Ma, S. Zhu, Ceram. Int. 46 (2020) 19738-19742.
DOI URL |
[53] |
R. Vassen, X. Cao, F. Tietz, D. Basu, D. Stover, J. Am. Ceram. Soc. 83 (20 0 0) 2023-2028.
DOI URL |
[54] |
B. Liu, Y. Liu, C. Zhu, H. Xiang, H. Chen, L. Sun, Y. Gao, Y. Zhou, J. Mater. Sci. Technol. 35 (2019) 833-851.
DOI |
[55] |
C. Wan, W. Zhang, Y. Wang, Z. Qu, A. Du, R. Wu, W. Pan, Acta Mater. 58 (2010) 6166-6172.
DOI URL |
[56] |
E.S. Toberer, A. Zevalkink, G.J. Snyder, J. Mater. Chem. 21 (2011) 15843-15852.
DOI URL |
[57] |
H. Hayashi, T. Saitou, N. Maruyama, H. Inaba, K. Kawamura, M. Mori, Solid State Ion. 176 (2005) 613-619.
DOI URL |
[58] |
Z. Sun, M. Li, Y. Zhou, J. Eur. Ceram. Soc. 29 (2009) 551-557.
DOI URL |
[59] |
A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, F.S. Pettit, Prog. Mater. Sci. 46 (2001) 505-553.
DOI URL |
[60] |
M.H. Tsai, J.W. Yeh, Mater. Res. Lett. 2 (2014) 107-123.
DOI URL |
[1] | Junwei Che, Xiangyang Liu, Xuezhi Wang, Quan Zhang, Erhu Zhang, Gongying Liang, Shengli Zhang. Ultralow oxygen ion diffusivity in pyrochlore-type La2(Zr0.7Ce0.3)2O7 [J]. J. Mater. Sci. Technol., 2022, 102(0): 174-185. |
[2] | Keekeun Kim, Damhyun Kim, Kibum Park, Junghan Yun, Chang-Sung Seok. Methodology for predicting the life of plasma-sprayed thermal barrier coating system considering oxidation-induced damage [J]. J. Mater. Sci. Technol., 2022, 105(0): 45-56. |
[3] | Muzhang Huang, Jia Liang, Peng Zhang, Yi Li, Yi Han, Zesheng Yang, Wei Pan, Chunlei Wan. Opaque Gd2Zr2O7/GdMnO3 thermal barrier materials for thermal radiation shielding: The effect of polaron excitation [J]. J. Mater. Sci. Technol., 2022, 100(0): 67-74. |
[4] | Liang Xu, Lei Su, Hongjie Wang, Hongfei Gao, Pengfei Guo, Min Niu, Kang Peng, Lei Zhuang, Zhiwei Dai. High-entropy Sm2B2O7 (B=Ti, Zr, Sn, Hf, Y, Yb, Nb, and Ta) oxides with highly disordered B-site cations for ultralow thermal conductivity [J]. J. Mater. Sci. Technol., 2022, 119(0): 182-189. |
[5] | Shuxiang Deng, Gang He, Zengchao Yang, Jingxia Wang, Jiangtao Li, Lei Jiang. Calcium-magnesium-alumina-silicate (CMAS) resistant high entropy ceramic (Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7 for thermal barrier coatings [J]. J. Mater. Sci. Technol., 2022, 107(0): 259-265. |
[6] | Guangrong Li, Chunhua Tang, Guanjun Yang. Dynamic-stiffening-induced aggravated cracking behavior driven by metal-substrate-constraint in a coating/substrate system [J]. J. Mater. Sci. Technol., 2021, 65(0): 154-163. |
[7] | Heng Chen, Zifan Zhao, Huimin Xiang, Fu-Zhi Dai, Wei Xu, Kuang Sun, Jiachen Liu, Yanchun Zhou. High entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12: A novel high temperature stable thermal barrier material [J]. J. Mater. Sci. Technol., 2020, 48(0): 57-62. |
[8] | Bin Liu, Yuchen Liu, Changhua Zhu, Huimin Xiang, Hongfei Chen, Luchao Sun, Yanfeng Gao, Yanchun Zhou. Advances on strategies for searching for next generation thermal barrier coating materials [J]. J. Mater. Sci. Technol., 2019, 35(5): 833-851. |
[9] | Guangrong Li, Guanjun Yang. Understanding of degradation-resistant behavior of nanostructured thermal barrier coatings with bimodal structure [J]. J. Mater. Sci. Technol., 2019, 35(3): 231-238. |
[10] | Qiaomu Liu, Shunzhou Huang, Aijie He. Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines [J]. J. Mater. Sci. Technol., 2019, 35(12): 2814-2823. |
[11] | Wei-Wei Zhang, Guang-Rong Li, Qiang Zhang, Guan-Jun Yang, Guo-Wang Zhang, Hong-Min Mu. Bimodal TBCs with low thermal conductivity deposited by a powder-suspension co-spray process [J]. J. Mater. Sci. Technol., 2018, 34(8): 1293-1304. |
[12] | W.Z. Tang, L. Yang, W. Zhu, Y.C. Zhou, J.W. Guo, C. Lu. Numerical Simulation of Temperature Distribution and Thermal-Stress Field in a Turbine Blade with Multilayer-Structure TBCs by a Fluid-Solid Coupling Method [J]. J. Mater. Sci. Technol., 2016, 32(5): 452-458. |
[13] | L. Yang, Q.X. Liu, Y.C. Zhou, W.G. Mao, C. Lu. Finite Element Simulation on Thermal Fatigue of a Turbine Blade with Thermal Barrier Coatings [J]. J. Mater. Sci. Technol., 2014, 30(4): 371-380. |
[14] | Limin He,Zhenhua Xu,Jianping Li,Rende Mu,Shimei He,Guanghong Huang. Substrate Effects on the High-Temperature Oxidation Behavior of Thermal Barrier Coatings [J]. J Mater Sci Technol, 2009, 25(06): 799-802. |
[15] | B. Saeedi,A. Sabour,A. Ebadi,A.M. Khoddami. Influence of the Thermal Barrier Coatings Design on the Oxidation Behavior [J]. J Mater Sci Technol, 2009, 25(04): 499-507. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||