J. Mater. Sci. Technol. ›› 2022, Vol. 105: 45-56.DOI: 10.1016/j.jmst.2021.07.018
• Research Article • Previous Articles Next Articles
Keekeun Kim, Damhyun Kim, Kibum Park, Junghan Yun, Chang-Sung Seok()
Received:
2021-03-21
Revised:
2021-06-16
Accepted:
2021-07-09
Published:
2021-09-08
Online:
2021-09-08
Contact:
Chang-Sung Seok
About author:
*E-mail address: seok@skku.edu (C.-S. Seok).Keekeun Kim, Damhyun Kim, Kibum Park, Junghan Yun, Chang-Sung Seok. Methodology for predicting the life of plasma-sprayed thermal barrier coating system considering oxidation-induced damage[J]. J. Mater. Sci. Technol., 2022, 105: 45-56.
Sample | Thickness, μm | Current, A | Voltage, V | Travel speed, mm/s | Distance, mm | Particle size, μm |
---|---|---|---|---|---|---|
Top coating | 350 | 500 | 74 | 300 | 7.5-12.7 | 45-125 |
Bond coating | 150 | 1400 | 60 | 300 | 230-305 | 5.5-45 |
Table 1. Parameters for the spray coating process[23].
Sample | Thickness, μm | Current, A | Voltage, V | Travel speed, mm/s | Distance, mm | Particle size, μm |
---|---|---|---|---|---|---|
Top coating | 350 | 500 | 74 | 300 | 7.5-12.7 | 45-125 |
Bond coating | 150 | 1400 | 60 | 300 | 230-305 | 5.5-45 |
Fig. 4. (a) Predicted cumulative TGOs according to the isothermal aging cycle; (b) TGO growth per cycle; open symbols represent experimental data [24].
Layer | Temperature, °C | Young's modulus, GPa | Poisson's ratio | Thermal conductivity, W(m∘C)-1 | Thermal expansion, ×10-6∘C-1 | Yield strength, MPa |
---|---|---|---|---|---|---|
TC [ | 20 | 48 | 0.10 | 1.80 | 9.7 | - |
1200 | 18 | 0.12 | 1.67 | 10.1 | - | |
TGO [ | 20 | 400 | 0.23 | 9.8 | 8.0 | - |
1200 | 315 | 0.25 | 5.26 | 9.5 | - | |
BC [ | 20 | 200 | 0.30 | 5.8 | 1.23 | 780 |
400 | 190 | 0.31 | 9.5 | 1.42 | 620 | |
600 | 145 | 0.31 | 12.0 | 1.52 | 510 | |
1000 | 120 | 0.33 | 16.2 | 1.72 | 10 | |
1200 | 100 | 0.33 | 17.0 | 1.77 | 10 | |
Substrate [ | 20 | 127 | 0.39 | 8.77 | 1.20 | - |
1200 | 80 | 0.42 | 24.5 | 1.72 | - |
Table 2. Material properties of TBCs used in the FE analysis.
Layer | Temperature, °C | Young's modulus, GPa | Poisson's ratio | Thermal conductivity, W(m∘C)-1 | Thermal expansion, ×10-6∘C-1 | Yield strength, MPa |
---|---|---|---|---|---|---|
TC [ | 20 | 48 | 0.10 | 1.80 | 9.7 | - |
1200 | 18 | 0.12 | 1.67 | 10.1 | - | |
TGO [ | 20 | 400 | 0.23 | 9.8 | 8.0 | - |
1200 | 315 | 0.25 | 5.26 | 9.5 | - | |
BC [ | 20 | 200 | 0.30 | 5.8 | 1.23 | 780 |
400 | 190 | 0.31 | 9.5 | 1.42 | 620 | |
600 | 145 | 0.31 | 12.0 | 1.52 | 510 | |
1000 | 120 | 0.33 | 16.2 | 1.72 | 10 | |
1200 | 100 | 0.33 | 17.0 | 1.77 | 10 | |
Substrate [ | 20 | 127 | 0.39 | 8.77 | 1.20 | - |
1200 | 80 | 0.42 | 24.5 | 1.72 | - |
Fig. 9. (a) Crack generation region according to the stress conversion rate; (b) Morphologies of spallation surfaces of TBCs according to temperature; (c) Changes in the exposed BC area of the spallation surface with increasing temperature.
Thermal cycle test temperature, °C | Equivalent time per cycle, h/cycle |
---|---|
1150 | 0.104 |
1175 | 0.125 |
1200 | 0.116 |
1250 | 0.119 |
1300 | 0.125 |
Table 3. Equivalent degradation time per cycle in terms of the thermal cycle test temperature.
Thermal cycle test temperature, °C | Equivalent time per cycle, h/cycle |
---|---|
1150 | 0.104 |
1175 | 0.125 |
1200 | 0.116 |
1250 | 0.119 |
1300 | 0.125 |
Fig. 14. (a) TGO growth prediction curve in the thermal cycle test calculated through equivalent conversion; (b) Thermal fatigue stress of TBCs obtained by performing the thermal cycle test simulation and FE analysis; (c) Cumulative stress in terms of the thermal cycle; (d) Cumulative damage graph in terms of the thermal cycle.
[1] |
B. Liu, Y. Liu, C. Zhu, H. Xiang, H. Chen, L. Sun, Y. Gao, Y. Zhou, J. Mater. Sci. Technol. 35 (2019) 833-851.
DOI |
[2] |
I. Gurrappa, A.S. Rao, Surf. Coat. Technol. 201 (2006) 3016-3029.
DOI URL |
[3] |
F. Zhou, Y. Wang, L. Wang, Z. Cui, Z. Zhang, J. Alloys Compd. 704 (2017) 614-623.
DOI URL |
[4] |
J.G. Lim, S. Seo, J.M. Koo, C.S. Seok, J.B. Choi, M.K. Kim, Surf. Coat. Technol. 315 (2017) 105-111.
DOI URL |
[5] |
S.V. Shinde, E.J. Gildersleeve V, C.A. Johnson, S. Sampath, Acta Mater 183 (2020) 196-206.
DOI URL |
[6] |
P. Skalka, K. Slámečka, J. Pokluda, L. čelko, Surf. Coat. Technol. 337 (2018) 321-334.
DOI URL |
[7] |
Y. Wang, Y. Bai, K. Liu, J.W. Wang, Y.X. Kang, J.R. Li, H.Y. Chen, B.Q. Li, Appl. Surf. Sci. 363 (2016) 101-112.
DOI URL |
[8] |
F. Sun, X. Fan, T. Zhang, P. Jiang, J. Yang, Ceram. Int. 46 (2020) 24326-24332.
DOI URL |
[9] |
G.R. Li, L.S. Wang, Appl. Surf. Sci. 483 (2019) 472-480.
DOI URL |
[10] |
Y. Song, Z. Lv, Y. Liu, X. Zhuan, T.J. Wang, Appl. Surf. Sci. 324 (2015) 627-633.
DOI URL |
[11] |
L. Wang, X.H. Zhong, F. Shao, J.X. Ni, J.S. Yang, S.Y. Tao, Y. Wang, Appl. Surf. Sci. 431 (2018) 101-111.
DOI URL |
[12] |
R. Kromer, J. Cormier, S. Costil, D. Courapied, L. Berthe, P. Peyre, Surf. Coat. Technol. 337 (2018) 168-176.
DOI URL |
[13] |
K. Yuan, Y. Yu, J.F. Wen, Vacuum 137 (2017) 72-80.
DOI URL |
[14] |
D. Liu, M. Seraffon, P.E.J. Flewitt, N.J. Simms, J.R. Nicholls, D.S. Rickerby, J. Eur. Ceram. Soc. 33 (2013) 3345-3357.
DOI URL |
[15] |
W.X. Zhang, X.L. Fan, T.J. Wang, Appl. Surf. Sci. 258 (2011) 811-817.
DOI URL |
[16] |
E.P. Busso, L. Wright, H.E. Evans, L.N. McCartney, S.R.J. Saunders, S. Osgerby, J. Nunn, Acta Mater 55 (2007) 1491-1503.
DOI URL |
[17] |
K.P. Jonnalagadda, R. Eriksson, X.H. Li, R.L. Peng, J. Eur. Ceram. Soc. 39 (2019) 1869-1876.
DOI |
[18] |
E.P. Busso, J. Lin, S. Sakurai, M. Nakayama, Acta Mater 49 (2001) 1515-1528.
DOI URL |
[19] |
H. Song, Y. Kim, J.M. Lee, J. Yun, D.J. Kim, J.M. Koo, C.S. Seok, Int. J. Precis. Eng. Manuf. 17 (2016) 241-245.
DOI URL |
[20] |
H. Dong, G.J. Yang, C.X. Li, X.T. Luo, C.J. Li, J. Am. Ceram. Soc. 97 (2014) 1226-1232.
DOI URL |
[21] |
P.K. Hota, B. Mohanty, Int. J. Electr. Power Energy Syst. 75 (2016) 205-214.
DOI URL |
[22] |
D. McGreevy, R. Giussani, M. Seltzer-Grant, A. Singh, A. Patel, S. Calladine, G. Gibb, Deployment of an online partial discharge monitoring system for power station with focus on gas turbine generators, 13th Int, Electr. Insul. Conf. INSUCON, 2017, doi: 10.23919/INSUCON.2017.8097188.
DOI |
[23] |
K. Kim, D. Kim, K. Park, J. Yun, N. Jun, C.S. Seok, Corros. Sci. 182 (2021) 109273.
DOI URL |
[24] |
D.H. Kim, K.K. Kim, B.W. Moon, K.B. Park, S. Park, C.S. Seok, Ceram. Int. 47 (2021) 14160-14167.
DOI URL |
[25] |
Y. Kim, J.M. Lee, H. Song, K. Han, J.M. Koo, Y.Z. Lee, C.S. Seok, Int. J. Precis. Eng. Manuf.-Green Technol. 4 (2017) 67-72.
DOI URL |
[26] |
H. Song, J.M. Lee, J. Yun, S. Park, Y. Kim, K.S. Kum, Y.Z. Lee, C.S. Seok, Int. J. Precis. Eng. Manuf.-Green Technol. 7 (2020) 185-193.
DOI URL |
[27] |
R. Eriksson, S. Sjöström, H. Brodin, S. Johansson, L. Östergren, X.H. Li, Surf. Coat. Technol. 236 (2013) 230-238.
DOI URL |
[28] | S. Shahbazmohamadi, Investigation of Bond-coat Rumpling in Thermal Barrier Coatings Using Advanced 3D Imaging Techniques, University of Connecticut, 2013 Ph.D. Thesis. |
[29] |
M. Gupta, K. Skogsberg, P. Nylén, J. Therm. Spray Technol. 23 (2014) 170-181.
DOI URL |
[30] |
S. Kyaw, A. Jones, M.A.E. Jepson, T. Hyde, R.C. Thomson, Mater. Des. 125 (2017) 189-204.
DOI URL |
[31] |
M. Bäker, J. Rösler, E. Affeldt, Comput. Mater. Sci. 47 (2009) 466-470.
DOI URL |
[32] |
M. Ranjbar-Far, J. Absi, G. Mariaux, F. Dubois, Mater. Des. 31 (2010) 772-781.
DOI URL |
[33] |
L. Yang, Y.C. Zhou, C. Lu, Acta Mater 59 (2011) 6519-6529.
DOI URL |
[34] | A. Cahit, K. Ogawa, A. Turk, I. Ozdemir, Thermal Shock and Cycling Behavior of Thermal Barrier Coatings (TBCs) Used in Gas Turbines, Prog. Gas Turbine Perform. (2013). https://doi.org/10.5772/54412. |
[35] |
J. Voyer, F. Gitzhofer, M.I. Boulos, J. Therm. Spray Technol. 7 (1998) 181-190.
DOI URL |
[36] |
J.R. Vaunois, J.M. Dorvaux, P. Kanouté, J.L. Chaboche, Eur. J. Mech. A/Solids. 42 (2013) 402-421.
DOI URL |
[37] |
J. Cheng, E.H. Jordan, B. Barber, M. Gell, Acta Mater 46 (1998) 5839-5850.
DOI URL |
[38] |
V. Teixeira, M. Andritschky, W. Fischer, H.P. Buchkremer, D. Stöver, J. Mater, Process. Technol. 92-93 (1999) 209-216.
DOI URL |
[39] |
D. Texier, D. Monceau, F. Crabos, E. Andrieu, Surf. Coat. Technol. 326 (2017) 28-36.
DOI URL |
[40] |
C. Zhou, C. Wang, Y. Song, Mater. Sci. Eng. A 490 (2008) 351-358.
DOI URL |
[41] |
D. Siebörger, H. Knake, U. Glatzel, Mater. Sci. Eng. A 298 (2001) 26-33.
DOI URL |
[42] |
T.K. Tsao, A.C. Yeh, C.M. Kuo, K. Kakehi, H. Murakami, J.W. Yeh, S.R. Jian, Sci. Rep. 7 (2017) 1-9.
DOI URL |
[43] |
M. Jinnestrand, S. Sjöström, Surf. Coat. Technol. 135 (2001) 188-195.
DOI URL |
[44] |
D.R. Mumm, G.A. Evans, Key Eng. Mater. 197 (2001) 199-230.
DOI URL |
[45] |
A.K. Ray, E.S. Dwarakadasa, D.K. Das, V.R. Ranganath, B. Goswami, J.K. Sahu, J.D. Whittenberger, Mater. Sci. Eng. A 448 (2007) 294-298.
DOI URL |
[46] |
R. Vaen, S. Giesen, D. Stöver, J. Therm. Spray Technol. 18 (2009) 835-845.
DOI URL |
[47] |
J. Yun, S. Wee, S. Park, J.M. Lee, H. Song, C.S. Seok, Int. J. Precis. Eng. Manuf. 21 (2020) 1677-1685.
DOI URL |
[48] |
J. Kondoh, H. Shiota, K. Kawachi, T. Nakatani, J. Alloys Compd. 365 (2004) 253-258.
DOI URL |
[49] |
C. Courcier, V. Maurel, L. Rémy, S. Quilici, I. Rouzou, A. Phelippeau, Surf. Coat. Technol. 205 (2011) 3763-3773.
DOI URL |
[50] | J. Frachon, Multiscale approach to predict the lifetime of EB-PVD thermal bar- rier coatings, Ecole Natl. Super. Des Mines Paris, 2013 Ph.D. Thesis. |
[51] |
T.S. Hille, S. Turteltaub, A.S.J. Suiker, Eng. Fract. Mech. 78 (2011) 2139-2152.
DOI URL |
[52] |
Y. Zhao, Y. Gao, Appl. Surf. Sci. 425 (2017) 1033-1039.
DOI URL |
[53] |
K. Park, K. Kim, D. Kim, B. Moon, S. Park, C.S. Seok, Ceram. Int. 47 (2021) 15883-15900.
DOI URL |
[54] |
Q. Chen, P. Hu, J. Pu, T. Zhang, J.H. Wang, Ceram. Int. 47 (2021) 2781-2792.
DOI URL |
[1] | Muzhang Huang, Jia Liang, Peng Zhang, Yi Li, Yi Han, Zesheng Yang, Wei Pan, Chunlei Wan. Opaque Gd2Zr2O7/GdMnO3 thermal barrier materials for thermal radiation shielding: The effect of polaron excitation [J]. J. Mater. Sci. Technol., 2022, 100(0): 67-74. |
[2] | Junwei Che, Xiangyang Liu, Xuezhi Wang, Quan Zhang, Erhu Zhang, Gongying Liang, Shengli Zhang. Ultralow oxygen ion diffusivity in pyrochlore-type La2(Zr0.7Ce0.3)2O7 [J]. J. Mater. Sci. Technol., 2022, 102(0): 174-185. |
[3] | Guangrong Li, Chunhua Tang, Guanjun Yang. Dynamic-stiffening-induced aggravated cracking behavior driven by metal-substrate-constraint in a coating/substrate system [J]. J. Mater. Sci. Technol., 2021, 65(0): 154-163. |
[4] | Heng Chen, Zifan Zhao, Huimin Xiang, Fu-Zhi Dai, Wei Xu, Kuang Sun, Jiachen Liu, Yanchun Zhou. High entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12: A novel high temperature stable thermal barrier material [J]. J. Mater. Sci. Technol., 2020, 48(0): 57-62. |
[5] | Bin Liu, Yuchen Liu, Changhua Zhu, Huimin Xiang, Hongfei Chen, Luchao Sun, Yanfeng Gao, Yanchun Zhou. Advances on strategies for searching for next generation thermal barrier coating materials [J]. J. Mater. Sci. Technol., 2019, 35(5): 833-851. |
[6] | Guangrong Li, Guanjun Yang. Understanding of degradation-resistant behavior of nanostructured thermal barrier coatings with bimodal structure [J]. J. Mater. Sci. Technol., 2019, 35(3): 231-238. |
[7] | Qiaomu Liu, Shunzhou Huang, Aijie He. Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines [J]. J. Mater. Sci. Technol., 2019, 35(12): 2814-2823. |
[8] | Wei-Wei Zhang, Guang-Rong Li, Qiang Zhang, Guan-Jun Yang, Guo-Wang Zhang, Hong-Min Mu. Bimodal TBCs with low thermal conductivity deposited by a powder-suspension co-spray process [J]. J. Mater. Sci. Technol., 2018, 34(8): 1293-1304. |
[9] | W.Z. Tang, L. Yang, W. Zhu, Y.C. Zhou, J.W. Guo, C. Lu. Numerical Simulation of Temperature Distribution and Thermal-Stress Field in a Turbine Blade with Multilayer-Structure TBCs by a Fluid-Solid Coupling Method [J]. J. Mater. Sci. Technol., 2016, 32(5): 452-458. |
[10] | L. Yang, Q.X. Liu, Y.C. Zhou, W.G. Mao, C. Lu. Finite Element Simulation on Thermal Fatigue of a Turbine Blade with Thermal Barrier Coatings [J]. J. Mater. Sci. Technol., 2014, 30(4): 371-380. |
[11] | Xuefeng Lu, Yin Wei, Hongjie Wang, Jiangbo Wen, Jun Zhou, Jinpeng Fan. Porosity and Oxide Layer Dependence of Thermal Shock Behavior of Porous Silicon Nitride Ceramics [J]. J. Mater. Sci. Technol., 2014, 30(12): 1217-1222. |
[12] | Xiaoming Yang,Huajie Yang,Fan Yang,Shuming Yin,Wei Wang,Shouxin Li,Qudong Wang. Tensile and Isothermal Fatigue Behaviors of Mg-12Gd-3Y-0.5Zr Alloy at High Temperature [J]. J Mater Sci Technol, 2009, 25(06): 731-737. |
[13] | Limin He,Zhenhua Xu,Jianping Li,Rende Mu,Shimei He,Guanghong Huang. Substrate Effects on the High-Temperature Oxidation Behavior of Thermal Barrier Coatings [J]. J Mater Sci Technol, 2009, 25(06): 799-802. |
[14] | B. Saeedi,A. Sabour,A. Ebadi,A.M. Khoddami. Influence of the Thermal Barrier Coatings Design on the Oxidation Behavior [J]. J Mater Sci Technol, 2009, 25(04): 499-507. |
[15] | Bin ZHANG, Qingyuan YU, Jun TAN, Guangping ZHANG. Electric Current-induced Failure of 200-nm-thick Gold Interconnects [J]. J Mater Sci Technol, 2008, 24(06): 895-898. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||