J. Mater. Sci. Technol. ›› 2022, Vol. 100: 67-74.DOI: 10.1016/j.jmst.2021.06.013
• Research Article • Previous Articles Next Articles
Muzhang Huanga, Jia Lianga, Peng Zhanga, Yi Lia, Yi Hana, Zesheng Yanga, Wei Pana, Chunlei Wana()
Received:
2021-05-22
Revised:
2021-06-27
Accepted:
2021-06-27
Published:
2022-02-20
Online:
2022-02-17
Contact:
Chunlei Wan
About author:
*E-mail address: wancl@mail.tsinghua.edu.cn (C. Wan).Muzhang Huang, Jia Liang, Peng Zhang, Yi Li, Yi Han, Zesheng Yang, Wei Pan, Chunlei Wan. Opaque Gd2Zr2O7/GdMnO3 thermal barrier materials for thermal radiation shielding: The effect of polaron excitation[J]. J. Mater. Sci. Technol., 2022, 100: 67-74.
Elements | Gd | Zr | Mn | O |
---|---|---|---|---|
A | 15.6 | 3.6 | 12.9 | 67.9 |
B | 13.8 | 18.5 | 0.3 | 67.4 |
Table 1 The elemental compositions at position A and B of the specimen with x = 0.05 (at.%).
Elements | Gd | Zr | Mn | O |
---|---|---|---|---|
A | 15.6 | 3.6 | 12.9 | 67.9 |
B | 13.8 | 18.5 | 0.3 | 67.4 |
Fig. 4. Directional-hemispherical (a) transmittance and (b) reflectance from 400 to 2500 nm of the (1-x)Gd2Zr2O7/2xGdMnO3 series at room temperature. The sample thickness is 1 mm.
Fig. 5. (a) Refractive index $n + {\rm{i}}k$ of GdMnO3 and Gd2Zr2O7. (b) Absorption coefficient $ {a_{{\rm{GMO}}}}$ and absorption factor Qabs of the GdMnO3.
Fig. 10. (a) Thermal conductivity of the (1-x)Gd2Zr2O7/2xGdMnO3 series as a function of temperature. (b) Detector signal in the laser flash analysis at 800 °C.
x | 0 | 0.025 | 0.050 | 0.075 |
---|---|---|---|---|
GdMnO3 weight fraction (wt.%) | 0.0 | 2.1 | 4.1 | 6.0 |
Density (g cm-3) | 6.92 | 6.94 | 6.94 | 6.96 |
Elastic modulus (GPa) | 233 | 232 | 229 | 228 |
Vickers hardness (GPa) | 10.8 | 11.2 | 11.6 | 11.1 |
Fracture toughness (MPa m1/2) | 1.1 | 1.1 | 1.1 | 0.9 |
Thermal expansion coefficient (10-6 K-1) | 10.9 | 11.3 | 11.2 | 11.1 |
Table 2 Some relevant properties of the (1-x)Gd2Zr2O7/2xGdMnO3 series.
x | 0 | 0.025 | 0.050 | 0.075 |
---|---|---|---|---|
GdMnO3 weight fraction (wt.%) | 0.0 | 2.1 | 4.1 | 6.0 |
Density (g cm-3) | 6.92 | 6.94 | 6.94 | 6.96 |
Elastic modulus (GPa) | 233 | 232 | 229 | 228 |
Vickers hardness (GPa) | 10.8 | 11.2 | 11.6 | 11.1 |
Fracture toughness (MPa m1/2) | 1.1 | 1.1 | 1.1 | 0.9 |
Thermal expansion coefficient (10-6 K-1) | 10.9 | 11.3 | 11.2 | 11.1 |
[1] |
N.P. Padture, M. Gell, E.H. Jordan, Science 296 (2002) 280-284.
PMID |
[2] | D.R. Clarke, M. Oechsner, N.P. Padture, MRS Bull 37 (2012) 891-902. |
[3] |
B. Liu, Y.C. Liu, C.H. Zhu, H.M. Xiang, H.F. Chen, L.C. Sun, Y.F. Gao, Y.C. Zhou, J. Mater. Sci. Technol. 35 (2019) 833-851.
DOI |
[4] |
W. Pan, S.R. Phillpot, C. Wan, A. Chernatynskiy, Z. Qu, MRS Bull. 37 (2012) 917-922.
DOI URL |
[5] |
L. Chen, M.Y. Hu, J. Guo, X.Y. Chong, J. Feng, J. Mater. Sci. Technol. 52 (2020) 20-28.
DOI |
[6] |
Z.F. Zhao, H. Chen, H.M. Xiang, F.Z. Dai, X.H. Wang, W. Xu, K. Sun, Z.J. Peng, Y. C. Zhou, J. Mater. Sci. Technol. 47 (2020) 45-51.
DOI URL |
[7] |
Z.F. Zhao, H. Chen, H.M. Xiang, F.Z. Dai, X.H. Wang, W. Xu, K. Sun, Z.J. Peng, Y. C. Zhou, J. Mater. Sci. Technol. 39 (2020) 167-172.
DOI URL |
[8] |
H. Chen, Z.F. Zhao, H.M. Xiang, F.Z. Dai, W. Xu, K. Sun, J.C. Liu, Y.C. Zhou, J. Mater. Sci. Technol. 48 (2020) 57-62.
DOI URL |
[9] |
R. Vaßen, H. Kassner, A. Stuke, D.E. Mack, M.O.D. Jarligo, D. Stöver, Mater. Sci. Forum 631-632 (2009) 73-78.
DOI URL |
[10] |
Q. Flamant, D.R. Clarke, Scr. Mater. 173 (2019) 26-31.
DOI URL |
[11] |
J.I. Eldridge, C.M. Spuckler, J.R. Markham, J. Am. Ceram. Soc. 92 (2009) 2276-2285.
DOI URL |
[12] |
L. Wang, J.I. Eldridge, S.M. Guo, Scr. Mater. 69 (2013) 674-677.
DOI URL |
[13] |
R. Siegel, C.M. Spuckler, Mater. Sci. Eng. A-Struct. 245 (1998) 150-159.
DOI URL |
[14] |
M.J. Liu, G.J. Yang, J. Mater. Sci. Technol. 67 (2021) 127-134.
DOI URL |
[15] |
A.M. Limarga, D.R. Clarke, Int. J. Appl. Ceram. Technol. 6 (2009) 400-409.
DOI URL |
[16] |
G.R. Li, C.H. Tang, G.J. Yang, J. Mater. Sci. Technol. 65 (2021) 154-163.
DOI URL |
[17] | M.J. Kelly, D.E. Wolfe, J. Singh, J. Eldridge, D.M. Zhu, R. Miller, Int. J. Appl. Ce- ram. Technol. 3 (2006) 81-93. |
[18] |
S. Dong, F. Zhang, N. Li, J. Zeng, P. Liang, H. Zhang, H. Liao, J. Jiang, L. Deng, X. Cao, J. Eur. Ceram. Soc. 40 (2020) 2020-2029.
DOI URL |
[19] |
T. Li, Z. Ma, L. Liu, S.Z. Zhu, Ceram. Int. 40 (2014) 11423-11426.
DOI URL |
[20] |
M.I. Mendelson, J. Am. Ceram. Soc. 52 (1969) 443-446.
DOI URL |
[21] |
M. Asmani, C. Kermel, A. Leriche, M. Ourak, J. Eur. Ceram. Soc. 21 (2001) 1081-1086.
DOI URL |
[22] |
G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, J. Am. Ceram. Soc. 64 (1981) 533-538.
DOI URL |
[23] |
P. Chantikul, G.R. Anstis, B.R. Lawn, D.B. Marshall, J. Am. Ceram. Soc. 64 (1981) 539-543.
DOI URL |
[24] | I. Barin, G. Platzki, in: Thermochemical Data of Pure Substances, third ed., Wi-ley, Hoboken, 1989, pp. 1-1885. |
[25] |
C.L. Wan, Z.X. Qu, A.B. Du, W. Pan, J. Am. Ceram. Soc. 94 (2011) 592-596.
DOI URL |
[26] |
Y.H. Lee, H.S. Sheu, J.P. Deng, H.C.I. Kao, J. Alloys Compd. 487 (2009) 595-598.
DOI URL |
[27] | W.S. Ferreira, J.A. Moreira, A. Almeida, M.R. Chaves, J.P. Araujo, J.B. Oliveira, J.M.M. Da Silva, M.A. Sa, T.M. Mendonca, P.S. Carvalho, J. Kreisel, J.L. Ribeiro, L.G. Vieira, P.B. Tavares, S. Mendonca, Phys. Rev. B 79 (2009) 054303. |
[28] | H. Yoshida, T. Inagaki, J. Alloys Compd. 408 (2006) 632-636. |
[29] |
R. Apetz, M.P.B. van Bruggen, J. Am. Ceram. Soc. 86 (2003) 480-486.
DOI URL |
[30] |
X.J. Wu, C. Zhou, W.R. Huang, F. Ahr, F.X. Kartner, Opt. Express 23 (2015) 29729-29737.
DOI URL |
[31] |
R.G. Grainger, J. Lucas, G.E. Thomas, G.B.L. Ewen, Appl. Opt. 43 (2004) 5386-5393.
DOI URL |
[32] |
S. Akamine, M. Fujita, J. Eur. Ceram. Soc. 34 (2014) 4031-4036.
DOI URL |
[33] | P. Laven, A Computer Program for Scattering of Light from a Sphere Using Mie Theory & the Debye Series, April 23, 2021 http://www.philiplaven.com/mieplot.htm . |
[34] |
B. Maheu, J.N. Letoulouzan, G. Gouesbet, Appl. Opt. 23 (1984) 3353-3362.
DOI URL |
[35] |
A. Pal, P. Murugavel, J. Appl. Phys. 123 (2018) 234102.
DOI URL |
[36] |
D. Emin, Phys. Rev. B 48 (1993) 13691-13702.
DOI URL |
[37] |
Y. Natanzon, A. Azulay, Y. Amouyal, Isr. J. Chem. 60 (2020) 768-786.
DOI URL |
[38] |
B.S. Nagaraja, A. Rao, P. Poornesh, G.S. Okram, J. Supercond. Novel Magn. 31 (2017) 2271-2281.
DOI URL |
[39] |
J.M. De Teresa, K. Dorr, K.H. Muller, L. Schultz, R.I. Chakalova, Phys. Rev. B 58 (1998) R5928-R5931.
DOI URL |
[40] | M.F. Modest, in: Radiative Heat Transfer, third ed., Elsevier Science, Amster-dam, 2013, p. 5. |
[41] |
H. Mehling, G. Hautzinger, O. Nilsson, J. Fricke, R. Hofmann, O. Hahn, Int. J. Thermophys. 19 (1998) 941-949.
DOI URL |
[42] |
M. Zhao, W. Pan, C. Wan, Z. Qu, Z. Li, J. Yang, J. Eur. Ceram. Soc. 37 (2017) 1-13.
DOI URL |
[43] | A. Pal, C.D. Sekhar, A. Venimadhav, P. Murugavel, J. Phys. Condens. Matter 29 (2017) 405803. |
[1] | Guangrong Li, Chunhua Tang, Guanjun Yang. Dynamic-stiffening-induced aggravated cracking behavior driven by metal-substrate-constraint in a coating/substrate system [J]. J. Mater. Sci. Technol., 2021, 65(0): 154-163. |
[2] | Heng Chen, Zifan Zhao, Huimin Xiang, Fu-Zhi Dai, Wei Xu, Kuang Sun, Jiachen Liu, Yanchun Zhou. High entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12: A novel high temperature stable thermal barrier material [J]. J. Mater. Sci. Technol., 2020, 48(0): 57-62. |
[3] | Bin Liu, Yuchen Liu, Changhua Zhu, Huimin Xiang, Hongfei Chen, Luchao Sun, Yanfeng Gao, Yanchun Zhou. Advances on strategies for searching for next generation thermal barrier coating materials [J]. J. Mater. Sci. Technol., 2019, 35(5): 833-851. |
[4] | Guangrong Li, Guanjun Yang. Understanding of degradation-resistant behavior of nanostructured thermal barrier coatings with bimodal structure [J]. J. Mater. Sci. Technol., 2019, 35(3): 231-238. |
[5] | Qiaomu Liu, Shunzhou Huang, Aijie He. Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines [J]. J. Mater. Sci. Technol., 2019, 35(12): 2814-2823. |
[6] | Wei-Wei Zhang, Guang-Rong Li, Qiang Zhang, Guan-Jun Yang, Guo-Wang Zhang, Hong-Min Mu. Bimodal TBCs with low thermal conductivity deposited by a powder-suspension co-spray process [J]. J. Mater. Sci. Technol., 2018, 34(8): 1293-1304. |
[7] | W.Z. Tang, L. Yang, W. Zhu, Y.C. Zhou, J.W. Guo, C. Lu. Numerical Simulation of Temperature Distribution and Thermal-Stress Field in a Turbine Blade with Multilayer-Structure TBCs by a Fluid-Solid Coupling Method [J]. J. Mater. Sci. Technol., 2016, 32(5): 452-458. |
[8] | L. Yang, Q.X. Liu, Y.C. Zhou, W.G. Mao, C. Lu. Finite Element Simulation on Thermal Fatigue of a Turbine Blade with Thermal Barrier Coatings [J]. J. Mater. Sci. Technol., 2014, 30(4): 371-380. |
[9] | A.A. Bahgat, M.G. Moustafa, E.E. Shaisha. Enhancement of Electric Conductivity in Transparent GlasseCeramic Nanocomposites of Bi2O3eBaTiO3 Glasses [J]. J. Mater. Sci. Technol., 2013, 29(12): 1166-1176. |
[10] | I. Neelakanta Reddy, V. Rajagopal Reddy, N. Sridhara, S. Basavaraja, A.K. Sharma,Arjun Dey. Optical and Microstructural Characterisations of Pulsed rf Magnetron Sputtered Alumina Thin Film [J]. J. Mater. Sci. Technol., 2013, 29(10): 929-936. |
[11] | A.A. Bahgat, H.A. Mady, A.S. Abdel Moghny, A.S. Abd-Rabo, Samia E. Negm. Transport Properties of KxV2O5?nH2O Nanocrystalline Films [J]. J Mater Sci Technol, 2011, 27(10): 865-872. |
[12] | Shijie Zhang, Xibin Cao, Yingqiang Luan, Xinxin Ma, Xiaohui Lin, Xianren Kong. Preparation and Properties of Smart Thermal Control and Radiation Protection Materials for Multi-functional Structure of Small Spacecraft [J]. J Mater Sci Technol, 2011, 27(10): 879-884. |
[13] | Limin He,Zhenhua Xu,Jianping Li,Rende Mu,Shimei He,Guanghong Huang. Substrate Effects on the High-Temperature Oxidation Behavior of Thermal Barrier Coatings [J]. J Mater Sci Technol, 2009, 25(06): 799-802. |
[14] | Wu Chen,Weiping Ye,Xudong Cheng,Wei Duan,Fang Mao,Deliang Li. Preparation, Microstructure and Properties of NiO-Cr2O3-TiO2 Infrared Radiation Coating [J]. J Mater Sci Technol, 2009, 25(05): 695-698. |
[15] | B. Saeedi,A. Sabour,A. Ebadi,A.M. Khoddami. Influence of the Thermal Barrier Coatings Design on the Oxidation Behavior [J]. J Mater Sci Technol, 2009, 25(04): 499-507. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||