J. Mater. Sci. Technol. ›› 2022, Vol. 104: 155-162.DOI: 10.1016/j.jmst.2021.07.014
• Research Article • Previous Articles Next Articles
Songcan Wanga,*(), Yuelin Lia,b, Xin Wanga, Guohao Zia,b, Chenyang Zhoua,b, Boyan Liua, Gang Liud,e, Lianzhou Wangc,*(
), Wei Huanga,*(
)
Received:
2021-06-21
Revised:
2021-07-02
Accepted:
2021-07-02
Published:
2022-03-30
Online:
2021-09-08
Contact:
Songcan Wang,Lianzhou Wang,Wei Huang
About author:
iamwhuang@nwpu.edu.cn (W. Huang).Songcan Wang, Yuelin Li, Xin Wang, Guohao Zi, Chenyang Zhou, Boyan Liu, Gang Liu, Lianzhou Wang, Wei Huang. One-step supramolecular preorganization constructed crinkly graphitic carbon nitride nanosheets with enhanced photocatalytic activity[J]. J. Mater. Sci. Technol., 2022, 104: 155-162.
Scheme. 1. Schematic illustration of the conversion of cyanuric acid from urea, the hydrogen-bonded supramolecular melamine-cyanuric acid (MCA), and the final produced g-C3N4 during thermal polycondensation of a mixture of melamine and urea. Dotted lines represent the hydrogen bonds.
Fig. 1. SEM images of (a) BCN and (b) CGCNNs. (c) TEM image of CGCNNs. (d) XRD patterns of BCN and CGCNNs. (e) N2 adsorption and desorption isotherms, and (f) BET surface area of BCN and CGCNNs. Insets in (e): digial images of 4 mL of BCN and CGCNNs.
Fig. 3. (a) UV-vis light absorption curves, (b) estimated bandgaps, (c) PL spectra, (d) EIS spectra, (e) enlarged EIS spectra, (f) transient photocurrent responses, (g) Hall mobility, (h) carrier density, and (i) band structure alignment of BCN and CGCNNs. Inset in (d): the equivalent circuit model.
Fig. 4. (a) Photocatalytic hydrogen production rates, (b) photocatalytic hydrogen evolution plots, and (c) AQE at 420 nm of BCN, CGCNNs, and CGCNNs-Na. (d) stability evaluation of photocatalytic hydrogen production of CGCNNs-Na.
[1] |
W. Zhao, Z. Chen, X. Yang, X. Qian, C. Liu, D. Zhou, T. Sun, M. Zhang, G. Wei, P.D. Dissanayake, Y.S. Ok, Renew. Sustain. Energy Rev. 132 (2020) 110040.
DOI URL |
[2] | S. Wang, J.H. Yun, B. Luo, T. Butburee, P. Peerakiatkhajohn, S. Thaweesak, M. Xiao, L. Wang, J. Mater. Sci. Technol. 33 (2017) 1-22. |
[3] |
B.J. Ng, L.K. Putri, X.Y. Kong, Y.W. Teh, P. Pasbakhsh, S.P. Chai, Adv. Sci. 7 (2020) 1903171.
DOI URL |
[4] | T. Fang, H. Huang, J. Feng, Y. Hu, Q. Qian, S. Yan, Z. Yu, Z. Li, Z. Zou, Research 2019 (2019) 92826742019. |
[5] | P. Liu, C. Wang, L. Wang, X. Wu, L. Zheng, H.G. Yang, Research 2020 (2020) 54732172020. |
[6] |
M.Z. Xu, Q. Li, Y.Y. Lv, Z.M. Yuan, Y.X. Guo, H.J. Jiang, J.W. Gao, J. Di, P. Song, L.X. Kang, L. Zheng, Z.Y. Zhang, W. Zhao, X.W. Wang, Z. Liu, Tungsten 2 (2020) 203-213.
DOI URL |
[7] |
S. Wang, L. Wang, W. Huang, J. Mater. Chem. A 8 (2020) 24307-24352.
DOI URL |
[8] |
X. Tan, S. Zhou, H.J. Tao, W.Y. Wang, Q.W. Wan, K.C. Zhang, J. Cent. South Univ. 26 (2019) 2011-2018.
DOI |
[9] |
S. Wang, L. Wang, Tungsten 1 (2019) 19-45.
DOI URL |
[10] |
X. Bian, S. Zhang, Y. Zhao, R. Shi, T. Zhang, InfoMat 3 (2021) 719-738.
DOI URL |
[11] |
Y. Wang, T. Liu, H. Li, B. Liu, L. Yang, Tungsten 1 (2019) 247-257.
DOI URL |
[12] |
X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8 (2009) 76-80.
DOI URL |
[13] |
W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Chem. Rev. 116 (2016) 7159-7329.
DOI URL |
[14] |
Y. Yang, S. Wang, Y. Li, J. Wang, L. Wang, Chem. Asian J. 12 (2017) 1421-1434.
DOI URL |
[15] |
M. Xiao, B. Luo, S. Wang, L. Wang, J. Energy Chem. 27 (2018) 1111-1123.
DOI URL |
[16] |
Y. Li, M. Zhou, B. Cheng, Y. Shao, J. Mater. Sci. Technol. 56 (2020) 1-17.
DOI URL |
[17] |
M. Ismael, Y. Wu, D.H. Taffa, P. Bottke, M. Wark, New J. Chem. 43 (2019) 6909-6920.
DOI URL |
[18] |
S. Thaweesak, S. Wang, M. Lyu, M. Xiao, P. Peerakiatkhajohn, L. Wang, Dalton Trans 46 (2017) 10714-10720.
DOI URL |
[19] | J. Barrio, M. Shalom, Chem Cat Chem 10 (2018) 5573-5586. |
[20] |
T. Wang, C. Nie, Z. Ao, S. Wang, T. An, J. Mater. Chem. A 8 (2020) 485-502.
DOI URL |
[21] |
B. Zhu, B. Cheng, L. Zhang, J. Yu, Carbon Energy 1 (2019) 32-56.
DOI URL |
[22] |
W. Luo, X. Chen, Z. Wei, D. Liu, W. Yao, Y. Zhu, Appl. Catal. B 255 (2019) 117761.
DOI URL |
[23] |
X. Wang, C. Zhou, R. Shi, Q. Liu, G.I.N. Waterhouse, L. Wu, C.H. Tung, T. Zhang, Nano Res 12 (2019) 2385-2389.
DOI URL |
[24] |
X. Chen, R. Shi, Q. Chen, Z. Zhang, W. Jiang, Y. Zhu, T. Zhang, Nano Energy 59 (2019) 644-650.
DOI URL |
[25] |
H.M. Zhao, C.M. Di, L. Wang, Y. Chun, Q.H. Xu, Microporous Mesoporous Mater. 208 (2015) 98-104.
DOI URL |
[26] |
P. Niu, L. Zhang, G. Liu, H.M. Cheng, Adv. Funct. Mater. 22 (2012) 4763-4770.
DOI URL |
[27] |
S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P.M. Ajayan, Adv. Mater. 25 (2013) 2452-2456.
DOI URL |
[28] |
Y.S. Jun, E.Z. Lee, X. Wang, W.H. Hong, G.D. Stucky, A. Thomas, Adv. Funct. Mater. 23 (2013) 3661-3667.
DOI URL |
[29] |
M. Shalom, S. Inal, C. Fettkenhauer, D. Neher, M. Antonietti, J. Am. Chem. Soc. 135 (2013) 7118-7121.
DOI PMID |
[30] |
S. Tischer, M. Börnhorst, J. Amsler, G. Schoch, O. Deutschmann, Phys. Chem. Chem. Phys. 21 (2019) 16785-16797.
DOI URL |
[31] |
Y. Wang, P. Du, H. Pan, L. Fu, Y. Zhang, J. Chen, Y. Du, N. Tang, G. Liu, Adv. Mater. 31 (2019) 1807540.
DOI URL |
[32] |
S. Tian, S. Chen, X. Ren, R. Cao, H. Hu, F. Bai, Nano Res 12 (2019) 3109-3115.
DOI URL |
[33] |
J. Xu, Z. Wang, Y. Zhu, J. Mater. Sci. Technol. 49 (2020) 133-143.
DOI URL |
[34] |
Y. Zhou, W. Lv, B. Zhu, F. Tong, J. Pan, J. Bai, Q. Zhou, H. Qin, ACS Sustain. Chem. Eng. 7 (2019) 5801-5807.
DOI |
[35] |
Q. Tay, P. Kanhere, C.F. Ng, S. Chen, S. Chakraborty, A.C.H. Huan, T.C. Sum, R. Ahuja, Z. Chen, Chem. Mater. 27 (2015) 4930-4933.
DOI URL |
[36] |
M. Wu, X. He, B. Jing, T. Wang, C. Wang, Y. Qin, Z. Ao, S. Wang, T. An, J. Hazard. Mater. 384 (2020) 121323.
DOI URL |
[37] |
J. Huang, Y. Lu, H. Zhang, L. Shangguan, Z. Mou, J. Sun, S. Sun, J. He, W. Lei, Chem. Eng. J. 405 (2021) 126685.
DOI URL |
[38] |
D. Jiang, L. Chen, J. Xie, M. Chen, Dalton Trans 43 (2014) 4878-4885.
DOI PMID |
[39] |
F. Dong, Y. Li, Z. Wang, W.-K. Ho, Appl. Surf. Sci. 358 (2015) 393-403.
DOI URL |
[40] |
B. Zhu, P. Xia, Y. Li, W. Ho, J. Yu, Appl. Surf. Sci. 391 (2017) 175-183.
DOI URL |
[41] |
X. Chen, D.-H. Kuo, D. Lu, RSC Adv. 6 (2016) 66814-66821.
DOI URL |
[42] |
B. Zhu, P. Xia, W. Ho, J. Yu, Appl. Surf. Sci. 344 (2015) 188-195.
DOI URL |
[43] |
H. Zou, X. Yan, J. Ren, X. Wu, Y. Dai, D. Sha, J. Pan, J. Liu, J. Materiomics 1 (2015) 340-347.
DOI URL |
[44] |
Z. Chen, S. Lu, Q. Wu, F. He, N. Zhao, C. He, C. Shi, Nanoscale 10 (2018) 3008-3013.
DOI URL |
[45] |
H. Li, Z. Bian, J. Zhu, D. Zhang, G. Li, Y. Huo, H. Li, Y. Lu, J. Am. Chem. Soc. 129 (2007) 8406-8407.
DOI URL |
[46] |
Y. Liao, S. Zhu, Z. Chen, X. Lou, D. Zhang, Phys. Chem. Chem. Phys. 17 (2015) 27826-27832.
DOI URL |
[47] |
S. Wang, T. He, P. Chen, A. Du, K. Ostrikov, W. Huang, L. Wang, Adv. Mater. 32 (2020) 2001385.
DOI URL |
[48] |
H. Chen, S. Wang, J. Wu, X. Zhang, J. Zhang, M. Lyu, B. Luo, G. Qian, L. Wang, J. Mater. Chem. A 8 (2020) 13231-13240.
DOI URL |
[49] |
C. Wang, H. Fan, X. Ren, J. Ma, J. Fang, W. Wang, Chem Sus Chem 11 (2018) 700-708.
DOI URL |
[50] |
H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao, C. Zhou, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T. Zhang, Adv. Mater. 29 (2017) 1605148.
DOI URL |
[51] | Z.H. Zhou, K.H. Chen, S. Gao, Z.W. Yang, L.N. He, Research 2020 (2020) 93982852020. |
[52] |
M.K. Rabchinskii, A.T. Dideikin, D.A. Kirilenko, M.V. Baidakova, V.V. Shnitov, F. Roth, S.V. Konyakhin, N.A. Besedina, S.I. Pavlov, R.A. Kuricyn, N.M. Lebedeva, P.N. Brunkov, A.Y. Vul, Sci. Rep. 8 (2018) 14154.
DOI PMID |
[53] |
J. Ran, T.Y. Ma, G. Gao, X.W. Du, S.Z. Qiao, Energy Environ. Sci. 8 (2015) 3708-3717.
DOI URL |
[54] |
Y. Li, Z. Ruan, Y. He, J. Li, K. Li, Y. Jiang, X. Xu, Y. Yuan, K. Lin, Appl. Catal. B 236 (2018) 64-75.
DOI URL |
[1] | Cheng Cheng, Chung-Li Dong, Jinwen Shi, Liuhao Mao, Yu-Cheng Huang, Xing Kang, Shichao Zong, Shaohua Shen. Regulation on polymerization degree and surface feature in graphitic carbon nitride towards efficient photocatalytic H2 evolution under visible-light irradiation [J]. J. Mater. Sci. Technol., 2022, 98(0): 160-168. |
[2] | Shumin Zhang, Hu Dong, Changsheng An, Zhongfu Li, Difa Xu, Kaiqiang Xu, Zhaohui Wu, Jie Shen, Xiaohua Chen, Shiying Zhang. One-pot synthesis of array-like sulfur-doped carbon nitride with covalently crosslinked ultrathin MoS2 cocatalyst for drastically enhanced photocatalytic hydrogen evolution [J]. J. Mater. Sci. Technol., 2021, 75(0): 59-67. |
[3] | Tingting Xu, Ping Niu, Shulan Wang, Li Li. High visible light photocatalytic activities obtained by integrating g-C3N4 with ferroelectric PbTiO3 [J]. J. Mater. Sci. Technol., 2021, 74(0): 128-135. |
[4] | Xueru Chen, Yin Zhang, Dashui Yuan, Wu Huang, Jing Ding, Hui Wan, Wei-Lin Dai, Guofeng Guan. One step method of structure engineering porous graphitic carbon nitride for efficient visible-light photocatalytic reduction of Cr(VI) [J]. J. Mater. Sci. Technol., 2021, 71(0): 211-220. |
[5] | Zhanyong Gu, Zhitao Cui, Zijing Wang, Tingru Chen, Peng Sun, Dawei Wen. Synthesis of crystalline carbon nitride with enhanced photocatalytic NO removal performance: An experimental and DFT theoretical study [J]. J. Mater. Sci. Technol., 2021, 83(0): 113-122. |
[6] | Jingjun Liu, Wei Fu, Yulong Liao, Jiajie Fan, Quanjun Xiang. Recent advances in crystalline carbon nitride for photocatalysis [J]. J. Mater. Sci. Technol., 2021, 91(0): 224-240. |
[7] | Yueni Mei, Yuyu Li, Fuyun Li, Yaqian Li, Yingjun Jiang, Xiwei Lan, Songtao Guo, Xianluo Hu. Lithium-ion insertion kinetics of Na-doped Li2TiSiO5 as anode materials for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 57(0): 18-25. |
[8] | Lu Zhang, Yuanyuan Cui, Fengli Yang, Quan Zhang, Juhua Zhang, Mengting Cao, Wei-Lin Dai. Electroless-hydrothermal construction of nickel bridged nickel sulfide@mesoporous carbon nitride hybrids for highly efficient noble metal-free photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 45(0): 176-186. |
[9] | Yang Li, Xin Li, Huaiwu Zhang, Jiajie Fan, Quanjun Xiang. Design and application of active sites in g-C3N4-based photocatalysts [J]. J. Mater. Sci. Technol., 2020, 56(0): 69-88. |
[10] | Xiaoyu Qu, Shaozheng Hu, Jin Bai, Ping Li, Guang Lu, Xiaoxue Kang. Synthesis of band gap-tunable alkali metal modified graphitic carbon nitride with outstanding photocatalytic H2O2 production ability via molten salt method [J]. J. Mater. Sci. Technol., 2018, 34(10): 1932-1938. |
[11] | Kwang Kim Young,Seo Hye-Jin,Kim Soonhyun,Hwang Sung-Ho,Park Hyunwoong,Kyoo Lim Sang. Effect of ZnO Electrodeposited on Carbon Film and Decorated with Metal Nanoparticles for Solar Hydrogen Production [J]. J. Mater. Sci. Technol., 2016, 32(10): 1058-1065. |
[12] | Sarath Ramadurgam, Tzu-Ging Lin, Chen Yang. Tailoring Optical and Plasmon Resonances in Core-shell and Core-multishell Nanowires for Visible Range Negative Refraction and Plasmonic Light Harvesting: A Review [J]. J. Mater. Sci. Technol., 2015, 31(6): 533-541. |
[13] | Yipeng Chao, Wu Tang, Xuehui Wang. Properties of Resistivity, Reflection and Absorption Related to Structure of ITO Films [J]. J Mater Sci Technol, 2012, 28(4): 325-328. |
[14] | Xifeng Lu, Hongjun Wang, Yi Yang, Tao Liu. Synthesis, Al3+/Mg2+ Intercalation and Structure Study of Graphite-like Carbon Nitride [J]. J Mater Sci Technol, 2011, 27(3): 245-251. |
[15] | Zhimin ZHOU, Lifang XIA, Mingren SUN. Influence of Bias on the Properties of Carbon Nitride Films Prepared by Vacuum Cathodic Arc Method [J]. J Mater Sci Technol, 2004, 20(06): 735-738. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||