J. Mater. Sci. Technol. ›› 2020, Vol. 58: 120-129.DOI: 10.1016/j.jmst.2020.03.075
• Research Article • Previous Articles Next Articles
Siavash Ghanbari, David F. Bahr*()
Received:
2020-01-04
Accepted:
2020-03-21
Published:
2020-12-01
Online:
2020-12-17
Contact:
David F. Bahr
Siavash Ghanbari, David F. Bahr. Predictions of decreased surface roughness after shot peening using controlled media dimensions[J]. J. Mater. Sci. Technol., 2020, 58: 120-129.
Fig. 1. Schematic figure to obtain number of impacts based on the Almen test simulation for 0.6 mm, 0.43 mm, and 0.30 mm shot sizes and using output results for surface roughness prediction.
Fig. 2. (a) Schematic figure arithmetic mean value and distance between highest peak and deepest valley; (b) Mean roughness for five predominant maximum and minimum height.
σ0 (MPa) | E(GPa) | ν | C | γ |
---|---|---|---|---|
359 | 190 | 0.3 | 169823 | 501.8 |
Table 1 Mechanical properties based on the cycling characteristic [14].
σ0 (MPa) | E(GPa) | ν | C | γ |
---|---|---|---|---|
359 | 190 | 0.3 | 169823 | 501.8 |
Simulation FEM Shot size | 0.35 mm, 0.43 mm and 0.6mm |
---|---|
Shot velocity | 80 m/s |
Experimental [ | 0.43 mm |
Shot velocity | 80 m/s |
Table 2 Modeling and Experimental parameters for shot peening.
Simulation FEM Shot size | 0.35 mm, 0.43 mm and 0.6mm |
---|---|
Shot velocity | 80 m/s |
Experimental [ | 0.43 mm |
Shot velocity | 80 m/s |
Fig. 4. (a) Schematic view of the Almen test setup; (b) Three random impact simulation after 40,000 impacts, ball-size 0.6 mm and 80 m/s shot velocity; (c) Almen strip separation from the rigid floor and balancing the internal stresses.
A (MPa) | B (MPa) | n | C | m | $\overset{}{\mathop{{{\varepsilon }_{0}}}}\,$ | T0(K) | TM(K) |
---|---|---|---|---|---|---|---|
1408 | 600 MPa | 0.234 | 0.0134 | 1 | 1 | 298 | 1793 |
Table 3 Materials parameters (Steel SAE 1070) used for Johnson Cook equation [26].
A (MPa) | B (MPa) | n | C | m | $\overset{}{\mathop{{{\varepsilon }_{0}}}}\,$ | T0(K) | TM(K) |
---|---|---|---|---|---|---|---|
1408 | 600 MPa | 0.234 | 0.0134 | 1 | 1 | 298 | 1793 |
σ0 (MPa) | E(GPa) | ν | ρ (Kg/m3) | μ (Friction coefficient) |
---|---|---|---|---|
1408 | 210 | 0.31 | 7980 | 0.3 |
Table 4 Physical and materials properties of steel 1070 [27].
σ0 (MPa) | E(GPa) | ν | ρ (Kg/m3) | μ (Friction coefficient) |
---|---|---|---|---|
1408 | 210 | 0.31 | 7980 | 0.3 |
Hertz Contact Theory | ${{P}_{0}}=\frac{1}{\pi }{{\left[ \frac{5}{2}\pi k\rho {{v}^{2}}E_{0}^{4} \right]}^{\frac{1}{5}}}$ | ρ : the density of the substrate; V: the normal velocity; E0: the young modulus.D: the ball diameter; K: the thermal dissipation 0.8; a: the radius of elastic contact; P0: the maximum pressure of elastic contact. |
$a=\frac{D}{2}{{\left[ \frac{5K\pi \rho V_{nor}^{2}}{2{{E}_{eq}}} \right]}^{\frac{1}{5}}}$ | ||
---|---|---|
Equivalent modulus | $\frac{1}{{{E}_{eq}}}=\frac{1-\vartheta _{m}^{2}}{{{E}_{m}}}+\frac{1-\vartheta _{s}^{2}}{{{E}_{s}}}$ | Em and Es are the modulus of the ball and the substrate, respectively. |
Hertzian principal stress | $\sigma _{xx}^{Hertz}=\left[ \frac{Z}{{{a}_{e}}}{{\tan }^{-1}}\left( \frac{Z}{{{a}_{e}}} \right)-1 \right]p\left( 1+\vartheta \right)+\frac{pa_{e}^{2}}{2\left( a_{e}^{2}+{{Z}^{2}} \right)}$ | ae: the radius of elastic contact; P: the maximum pressure of elastic contact, Z corresponding depth. |
$\sigma _{yy}^{Hertz}=\left[ \frac{Z}{{{a}_{e}}}{{\tan }^{-1}}\left( \frac{Z}{{{a}_{e}}} \right)-1 \right]p\left( 1+\vartheta \right)+\frac{pa_{e}^{2}}{2\left( a_{e}^{2}+{{Z}^{2}} \right)}$ | ||
$\sigma _{zz}^{Hertz}=-p[(\frac{z}{a_e})^{-1}+1]$ | ||
Hertzian stress can be expressed based on the elastic stress | $\begin{matrix} \overline{{{\sigma }^{el}}}\left( z \right)=\overline{{{\sigma }^{Hertzl}}}\left( z \right)= \\ \left[ \begin{matrix} \sigma _{xx}^{Hertz}\left( z \right) & 0 & 0 \\ 0 & \sigma _{yy}^{Hertz}\left( z \right) & 0 \\ 0 & 0 & \sigma _{zz}^{Hertz}\left( z \right) \\ \end{matrix} \right] \\ \end{matrix}$ | $s_{ij}^{el}$ deviatoric elastic stress |
Deviatoric elastic stress tensor | $s_{ij}^{el}\left( z \right)=\sigma _{ij}^{el}\left( z \right)-\left( \frac{\sigma _{ij}^{el}\left( z \right)}{3} \right){{\delta }_{ij}}$ | |
Von Mises criterion | $f\left( S,\alpha \right)=\frac{1}{2}{{\left( S-\alpha \right)}^{T}}\left( S-\alpha \right)-{{\left( {{R}_{0}}+\Delta R \right)}^{2}}\le 0$ | ΔR : the elastic domain increasing related to isotropic hardening; R0: the isotropic hardening, ${{R}_{0}}=\sqrt{\frac{2}{3}}{{\sigma }_{s}}$, α: internal variable,$\alpha =C{{\varepsilon }^{P}}$ ; K : the radius of the yield surface $k=\sqrt{\frac{2H}{3{{\sigma }_{s}}}}$; H: the slope of linear kinematic hardening. |
Modified variable | $\alpha _{ij}^{ ' }={{\alpha }_{ij\left( z \right)-S_{ij}^{ind}\left( z \right)}}$ | |
Defining the new yield stress after shot peening, deviatoric stress after elastic or elastoplastic shakedown | $\frac{1}{2}{{\left( S_{ij}^{el}-\alpha _{ij}^{'} \right)}^{T}}\left( S_{ij}^{el}-\alpha _{ij}^{'} \right)\le {{K}^{2}}$ | α'(z)=$S_{eq}^{el}(z)-K$ (elastic shakedown) ; α'(z)=K(plastic shakedown). |
αindz Induced residual stresses due to the shot peening | ${{\alpha }^{ind}}\left( z \right)=-{{\varepsilon }^{p}}\left( z \right)(\frac{{{E}_{m}}}{1-{{\vartheta }_{m}}})$ | C is the hardening modulus |
Modified variable | ${\alpha }'\left( z \right)=C{{\varepsilon }^{p}}\left( z \right)-\frac{{{\sigma }^{ind}}(z)}{3}$ | |
Bending stress | $\Delta \varepsilon _{eq}^{p}\left( z \right)=\Delta {{\alpha }_{eq}}(z)\left( \frac{3\left( 1-\vartheta \right)}{3C\left( 1-\vartheta \right)+E} \right)$ | |
Bending moment | ${{\sigma }_{bend}}=\frac{12M}{b{{h}^{3}}}\left( \frac{h}{2}-z \right)$ | |
Stretch stress | $M=\underset{0}{\overset{k}{\mathop \int }}\,{{\sigma }_{s}}\left( Z \right)\left( \frac{H}{2}-Z \right)dz$ $\sigma _{xx}^{stretch}\left( z \right)=-\frac{1}{h}\underset{0}{\overset{{{z}_{max}}}{\mathop \int }}\,\sigma _{xx}^{ind}\left( z \right)dz$ | |
Almen arc height | $Arc=\frac{3ML_{x}^{2}}{2{{E}_{m}}{{h}^{3}}}$ | M: the bending moment, Lx: characteristic distance Almen gauge 31.75 mm; h: the Almen thickness, Em: the equivalent modulus. |
Table 5 Summary of all analytical equations used by Guechichi [27] utilized equations in this work.
Hertz Contact Theory | ${{P}_{0}}=\frac{1}{\pi }{{\left[ \frac{5}{2}\pi k\rho {{v}^{2}}E_{0}^{4} \right]}^{\frac{1}{5}}}$ | ρ : the density of the substrate; V: the normal velocity; E0: the young modulus.D: the ball diameter; K: the thermal dissipation 0.8; a: the radius of elastic contact; P0: the maximum pressure of elastic contact. |
$a=\frac{D}{2}{{\left[ \frac{5K\pi \rho V_{nor}^{2}}{2{{E}_{eq}}} \right]}^{\frac{1}{5}}}$ | ||
---|---|---|
Equivalent modulus | $\frac{1}{{{E}_{eq}}}=\frac{1-\vartheta _{m}^{2}}{{{E}_{m}}}+\frac{1-\vartheta _{s}^{2}}{{{E}_{s}}}$ | Em and Es are the modulus of the ball and the substrate, respectively. |
Hertzian principal stress | $\sigma _{xx}^{Hertz}=\left[ \frac{Z}{{{a}_{e}}}{{\tan }^{-1}}\left( \frac{Z}{{{a}_{e}}} \right)-1 \right]p\left( 1+\vartheta \right)+\frac{pa_{e}^{2}}{2\left( a_{e}^{2}+{{Z}^{2}} \right)}$ | ae: the radius of elastic contact; P: the maximum pressure of elastic contact, Z corresponding depth. |
$\sigma _{yy}^{Hertz}=\left[ \frac{Z}{{{a}_{e}}}{{\tan }^{-1}}\left( \frac{Z}{{{a}_{e}}} \right)-1 \right]p\left( 1+\vartheta \right)+\frac{pa_{e}^{2}}{2\left( a_{e}^{2}+{{Z}^{2}} \right)}$ | ||
$\sigma _{zz}^{Hertz}=-p[(\frac{z}{a_e})^{-1}+1]$ | ||
Hertzian stress can be expressed based on the elastic stress | $\begin{matrix} \overline{{{\sigma }^{el}}}\left( z \right)=\overline{{{\sigma }^{Hertzl}}}\left( z \right)= \\ \left[ \begin{matrix} \sigma _{xx}^{Hertz}\left( z \right) & 0 & 0 \\ 0 & \sigma _{yy}^{Hertz}\left( z \right) & 0 \\ 0 & 0 & \sigma _{zz}^{Hertz}\left( z \right) \\ \end{matrix} \right] \\ \end{matrix}$ | $s_{ij}^{el}$ deviatoric elastic stress |
Deviatoric elastic stress tensor | $s_{ij}^{el}\left( z \right)=\sigma _{ij}^{el}\left( z \right)-\left( \frac{\sigma _{ij}^{el}\left( z \right)}{3} \right){{\delta }_{ij}}$ | |
Von Mises criterion | $f\left( S,\alpha \right)=\frac{1}{2}{{\left( S-\alpha \right)}^{T}}\left( S-\alpha \right)-{{\left( {{R}_{0}}+\Delta R \right)}^{2}}\le 0$ | ΔR : the elastic domain increasing related to isotropic hardening; R0: the isotropic hardening, ${{R}_{0}}=\sqrt{\frac{2}{3}}{{\sigma }_{s}}$, α: internal variable,$\alpha =C{{\varepsilon }^{P}}$ ; K : the radius of the yield surface $k=\sqrt{\frac{2H}{3{{\sigma }_{s}}}}$; H: the slope of linear kinematic hardening. |
Modified variable | $\alpha _{ij}^{ ' }={{\alpha }_{ij\left( z \right)-S_{ij}^{ind}\left( z \right)}}$ | |
Defining the new yield stress after shot peening, deviatoric stress after elastic or elastoplastic shakedown | $\frac{1}{2}{{\left( S_{ij}^{el}-\alpha _{ij}^{'} \right)}^{T}}\left( S_{ij}^{el}-\alpha _{ij}^{'} \right)\le {{K}^{2}}$ | α'(z)=$S_{eq}^{el}(z)-K$ (elastic shakedown) ; α'(z)=K(plastic shakedown). |
αindz Induced residual stresses due to the shot peening | ${{\alpha }^{ind}}\left( z \right)=-{{\varepsilon }^{p}}\left( z \right)(\frac{{{E}_{m}}}{1-{{\vartheta }_{m}}})$ | C is the hardening modulus |
Modified variable | ${\alpha }'\left( z \right)=C{{\varepsilon }^{p}}\left( z \right)-\frac{{{\sigma }^{ind}}(z)}{3}$ | |
Bending stress | $\Delta \varepsilon _{eq}^{p}\left( z \right)=\Delta {{\alpha }_{eq}}(z)\left( \frac{3\left( 1-\vartheta \right)}{3C\left( 1-\vartheta \right)+E} \right)$ | |
Bending moment | ${{\sigma }_{bend}}=\frac{12M}{b{{h}^{3}}}\left( \frac{h}{2}-z \right)$ | |
Stretch stress | $M=\underset{0}{\overset{k}{\mathop \int }}\,{{\sigma }_{s}}\left( Z \right)\left( \frac{H}{2}-Z \right)dz$ $\sigma _{xx}^{stretch}\left( z \right)=-\frac{1}{h}\underset{0}{\overset{{{z}_{max}}}{\mathop \int }}\,\sigma _{xx}^{ind}\left( z \right)dz$ | |
Almen arc height | $Arc=\frac{3ML_{x}^{2}}{2{{E}_{m}}{{h}^{3}}}$ | M: the bending moment, Lx: characteristic distance Almen gauge 31.75 mm; h: the Almen thickness, Em: the equivalent modulus. |
Ball size diameter (mm) | Impact angle (degree) | Ball Poisson ratio | Ball modulus (MPa) | Ball density (kg/m3) | Substrate Poisson ratio | Substrate modulus (MPa) | Substrate density (kg/m3) | Substrate yield stress (MPa) | Substrate Kinematic hardening (MPa) | Substrate strip length (mm) | Substrate strip width (mm) | Substrate strip height (mm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.6 | 0 | 0.3 | 210000 | 7800 | 0.29 | 205000 | 7800 | 1408 | 1705 | 76 | 19 | 1.29 |
Table 6 Data input for analytical solution.
Ball size diameter (mm) | Impact angle (degree) | Ball Poisson ratio | Ball modulus (MPa) | Ball density (kg/m3) | Substrate Poisson ratio | Substrate modulus (MPa) | Substrate density (kg/m3) | Substrate yield stress (MPa) | Substrate Kinematic hardening (MPa) | Substrate strip length (mm) | Substrate strip width (mm) | Substrate strip height (mm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.6 | 0 | 0.3 | 210000 | 7800 | 0.29 | 205000 | 7800 | 1408 | 1705 | 76 | 19 | 1.29 |
Fig. 5. (a) Analytical solution for Almen height as a function of velocity (initial velocity 5 m/s); (b) FEM results for Almen height as a function of coverage or number of impacts. (dashed lines fit to guide the eye).
Ball dimension (mm) | 0.6 | 0.43 | 0.35 |
---|---|---|---|
Analytical solution of arc height, per | 0.245 | 0.218 | 0.19 |
Numerical solution (FEM) Arc height ~98 %-99 % coverage (mm) | 0.280 | 0.248 | 0.22 |
Number of shots | 30100 | 53000 | 76000 |
Table 7 Almen height calculated with analytical solution and numerical method.
Ball dimension (mm) | 0.6 | 0.43 | 0.35 |
---|---|---|---|
Analytical solution of arc height, per | 0.245 | 0.218 | 0.19 |
Numerical solution (FEM) Arc height ~98 %-99 % coverage (mm) | 0.280 | 0.248 | 0.22 |
Number of shots | 30100 | 53000 | 76000 |
FEM modeling | D (mm) | V (m/s) | Distribution of Shots (%) (0.6 mm, 0.43 mm, 0.35 mm) | Sequence |
---|---|---|---|---|
Shot peening model-1 | 0.6 | 80 | 100, 0, 0 | n/a |
Shot peening model-2 | 0.43 | 80 | 100, 0, 0 | n/a |
Shot peening model-3 | 0.35 | 80 | 100, 0, 0 | n/a |
Shot peening model-4 | 0.6, 0.43, 0.35 | 80 | 0.33, 0.33, 0.33 | Mixed simultaneous |
Shot peening model-5 | 0.6, 0.43, 0.35 | 80 | 0.33, 0.33, 0.33 | Sequential impact (0.6 mm→0.43 mm→ 0.35 mm) |
Shot peening model-6 | 0.35, 0.43, 0.6 | 80 | 0.33, 0.33, 0.33 | Sequential impact (0.35 mm→0.43 mm→ 0.6 mm) |
Table 8 Shot peening simulations for different setup.
FEM modeling | D (mm) | V (m/s) | Distribution of Shots (%) (0.6 mm, 0.43 mm, 0.35 mm) | Sequence |
---|---|---|---|---|
Shot peening model-1 | 0.6 | 80 | 100, 0, 0 | n/a |
Shot peening model-2 | 0.43 | 80 | 100, 0, 0 | n/a |
Shot peening model-3 | 0.35 | 80 | 100, 0, 0 | n/a |
Shot peening model-4 | 0.6, 0.43, 0.35 | 80 | 0.33, 0.33, 0.33 | Mixed simultaneous |
Shot peening model-5 | 0.6, 0.43, 0.35 | 80 | 0.33, 0.33, 0.33 | Sequential impact (0.6 mm→0.43 mm→ 0.35 mm) |
Shot peening model-6 | 0.35, 0.43, 0.6 | 80 | 0.33, 0.33, 0.33 | Sequential impact (0.35 mm→0.43 mm→ 0.6 mm) |
Fig. 7. Surface roughness: (a) model-1 shot size 0.6 mm; (b) model-2 shot size 0.43 mm; (c) model-3 shot size 0.35 mm; (d) model-4 mixed shot; (e) model-5 sequence impact big to small shot; (f) model-6 sequence impact small to big shot.
Fig. 8. Surface roughness profile for three different roughness parameters Ra, Rc, and Rz as a function of peening process order and size. Note, 100 % coverage was used for the individual shot sizes, but for mixed and sequences a total of 100 % coverage was used; hence in a sequence of peening only 33 % coverage was carried out with any one shot size.
Shot peening | Shot-Diameter (mm) | Velocity (m/s) | Coverage (%) | Roughness Parameters (μm) |
---|---|---|---|---|
Experimental data [ | 0.43 | 80 | 100 | Ra = 4.59 [ |
Rc = 18.68 [ | ||||
Rz = 29.70 [ | ||||
Simulation Model-2 | 0.43 | 80 | 100 | Ra = 4.80 |
Rc = 15.53 | ||||
Rz = 24.38 |
Table 9 Validation of modeling results in this research with experimental results obtained by Bagherifard et al [14].
Shot peening | Shot-Diameter (mm) | Velocity (m/s) | Coverage (%) | Roughness Parameters (μm) |
---|---|---|---|---|
Experimental data [ | 0.43 | 80 | 100 | Ra = 4.59 [ |
Rc = 18.68 [ | ||||
Rz = 29.70 [ | ||||
Simulation Model-2 | 0.43 | 80 | 100 | Ra = 4.80 |
Rc = 15.53 | ||||
Rz = 24.38 |
[1] | S. Kyriacou, Proceedings of the 6th International Conference on Shot Peening, California, 1996, pp. 506-516, August. |
[2] | P.K. Sharp, J.Q. Clayton, G. Clark, Fatigue Fract. Eng. Mater. Struct. 17 (1994) 243-252. |
[3] | H.Y. Miao, D. Demers, S. Larosea, P. MartinLévesque, J. Mater. Process. Technol. 210 (2010) 2089-2102. |
[4] | F.Y. Al-Obaid, Comput. Struct. 36 (1990) 681-689. |
[5] | S.A. Meguid, G. Shagal, J. Stranart, Int. J. Impact Eng. 27 (2002) 119-134. |
[6] | T.S. Al-Hassani, K. Kormi, D.C. Webb, 7th International Conference on Shot Peening (ICSP), Warsaw, Poland, 1999. |
[7] | S. Meguid, G. Shagal, J. Stranart, J. Mater. Process. Technol. 92 (1999) 401-404. |
[8] | K. Schiffer, C.H. Droste gen, Comput.Struct. 72 (1999) 329-340. |
[9] | T. Kim, H.E. Lee, H. Lee, S. Cheong, Mater. Des. 1 (2010) 50-59. |
[10] | M. Guagliano, J. Mater. Process. Technol. 110 (2001) 277-286. |
[11] | S. Bagherifard, R. Ghelichi, M. Guagliano, Surf. Coat. Technol. 204 (2010) 4081-4090. |
[12] | H.Y. Miao, H. Larose, C. Perron, M. Lévesque, Adv. Eng. Softw. 40 (2009) 1023-1038. |
[13] | G.I. Mylonas, G. Labeas, Surf. Coat. Technol. 205 (2011) 4480-4494. |
[14] | S. Bagherifard, R. Ghelichi, M. Guagliano, J. Appl. Surf. Sci. 258 (2012) 6831-6840. |
[15] | J.B. 0601, Geometrical Product Specification (GPS) - Surface Texture: Profile Method - Terms, Definitions and Surface Texture Parameters, FOREIGN STANDARD, 2001. |
[16] | E.S. Gadelmawla, M.M. Koura, T.M.A. Maksoud, I.M. Elewa, H.H. Soliman, J. Mater. Process. Technol. 123 (2002) 133-145. |
[17] | M.D. Sangid, J.A. Stori, P.M. Ferriera, Int. J. Adv. Manuf. Technol. 53 (2010) 561-575. |
[18] | V. Bavcová, D. Draganovskám, Mater. Sci. 1 (2004) 25-131. |
[19] | J.B. 0031, Geometrical Product Specifications (GPS) - Indication of Surface Texture in Technical Product Documentation, Japanese STANDARD, TOKYO, 2003. |
[20] | M. Sangid, J.A. Stori, P.M. Ferriera, Int. J. Adv. Manuf. Technol. 53 (2011) 545-560. |
[21] | J. Shit, S. Dhar, S. Acharyya, Proc. Eng. 55 (2013) 74-779. |
[22] | W.Y. Li, H. Liao, C. Li, G. Li, C. Coddet, X. Wang, Appl. Surf. Sci. 253 (2006) 2852-2862. |
[23] | J. Schwarzer, V. Schulze, O. Vohringer, Mater. Sci. Forum 462 (2003) 3951-3956. |
[24] | M. Zimmerman, V. Schulze, H.U. Baron, D. Löhe, Proceeding of the 10th International, Tokyo, Japan, 2008, p. 63. |
[25] | D. Kirk, M.Y. Abyaneh, Shot Peener 2 (1993) 28-30. |
[26] | H. Dianyin, Y. Gao, F. Meng, J. Song, Y. Wang, M. Ren, R. Wang, Chin. J. Aeronaut. 30 (2017) 1592-1602. |
[27] | H. Guechichi, L. Castex, M. Benkhettab, Mech. Based Des. Struct. Mech. 41 (2013) 79-99. |
[28] | W. Cao, R. Fathallah, L. Castex, Mater. Sci. Technol. 11 (2013) 967-973. |
[29] | E. Nordina, B. Alfredsson, J. Mater. Process. Technol. 235 (2016) 143-148. |
[30] | A. Aquil, C.E. Donald, ASM International, Materials Park, OH, 1989. |
[1] | Wenlong Qi, Jidong Wang, Xuanpeng Li, Yanan Cui, Yang Zhao, Junfeng Xie, Guanxin Zeng, Qiuying Gao, Tao Zhang, Fuhui Wang. Effect of oxide scale on corrosion behavior of HP-13Cr stainless steel during well completion process [J]. J. Mater. Sci. Technol., 2021, 64(0): 153-164. |
[2] | Lingling Liu, Yeqiang Bu, Yue Sun, Jianfeng Pan, Jiabin Liu, Jien Ma, Lin Qiu, Youtong Fang. Trace bis-(3-sulfopropyl)-disulfide enhanced electrodeposited copper foils [J]. J. Mater. Sci. Technol., 2021, 74(0): 237-245. |
[3] | Xinkai Ma, Zhuo Chen, Dongling Zhong, S.N. Luo, Lei Xiao, Wenjie Lu, Shanglin Zhang. Effect of rotationally accelerated shot peening on the microstructure and mechanical behavior of a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 27-38. |
[4] | Hui Liu, Rui Liu, Ihsan Ullah, Shuyuan Zhang, Ziqing Sun, Ling Ren, Ke Yang. Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity [J]. J. Mater. Sci. Technol., 2020, 48(0): 130-139. |
[5] | Adnan Tahir, Guang-Rong Li, Mei-Jun Liu, Guan-Jun Yang, Cheng-Xin Li, Yu-Yue Wang, Chang-Jiu Li. Improving WC-Co coating adhesive strength on rough substrate: Finite element modeling and experiment [J]. J. Mater. Sci. Technol., 2020, 37(0): 1-8. |
[6] | Wang X., Li Y.S., Zhang Q., Zhao Y.H., Zhu Y.T.. Gradient Structured Copper by Rotationally Accelerated Shot Peening [J]. J. Mater. Sci. Technol., 2017, 33(7): 758-761. |
[7] | Shuyi Wu, Xinglong Wu, Paul K. Chu. Ink Dispersion on Qianlong Xuan Paper with Improved Ink Expression [J]. J. Mater. Sci. Technol., 2016, 32(2): 182-188. |
[8] | Xianfei Wang, Shoumei Xiong. Characterization of Microstructural and Morphological Properties in As-deposited Ta/NiFe/IrMn/CoFe/Ta Multilayer System [J]. J. Mater. Sci. Technol., 2014, 30(4): 359-364. |
[9] | R. Bidulsky,M. Actis-Grande,M. Kabatova,J. Bidulska. Effect of Varying Carbon Content and Shot Peening upon Fatigue Performance of Prealloyed Sintered Steels [J]. J Mater Sci Technol, 2009, 25(05): 607-610. |
[10] | Jun Li,Yongwei Zhu,Dunwen Zuo,Yong Zhu,Chuangtian Chen. Optimization of Polishing Parameters with Taguchi Method for LBO Crystal in CMP [J]. J Mater Sci Technol, 2009, 25(05): 703-707. |
[11] | Xiufang CHEN, Xiangang XU, Juan LI, Shouzhen JIANG, Lina NING, Yingmin WANG, Deying MA, Xiaobo HU, Minhua JIANG. Surface polishing of 6H-SiC substrates [J]. J Mater Sci Technol, 2007, 23(03): 430-432. |
[12] | Xiufang CHEN, Juan LI, Deying MA, Xiaobo HU, Xiangang XU, Minhua JIANG. Fine machining of large-diameter 6H-SiC wafers [J]. J Mater Sci Technol, 2006, 22(05): 681-684. |
[13] | Liang SUN, Jun DU, Xiaoshan WU, Shiming ZHOU, Xixiang ZHANG, An HU. Comparison between Top and Bottom NiO-pinning Spin Valves: Effect of Interfacial Roughness on Specular Reflection [J]. J Mater Sci Technol, 2006, 22(03): 397-400. |
[14] | Yongkang ZHAO, Yang YAO, Weixian LIU, Caiyun ZHENG, Shujun LI. Fibroblast Adhesion and Proliferation on a New β Type Ti-39Nb-13Ta-4.6Zr Alloy for Biomedical Application [J]. J Mater Sci Technol, 2006, 22(02): 205-210. |
[15] | Daoxin LIU, Xiaodong ZHU, Bin TANG, Jiawen HE. Fretting Fatigue Improvement of Ti6Al4V by Coating and Shot Peening [J]. J Mater Sci Technol, 2005, 21(02): 246-250. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||