J. Mater. Sci. Technol. ›› 2020, Vol. 58: 24-33.DOI: 10.1016/j.jmst.2020.03.069
• Research Article • Previous Articles Next Articles
Zheng Chen*(), Mingli Qin*(
), Junjun Yang, Lin Zhang, Baorui Jia, Xuanhui Qu
Received:
2020-02-02
Accepted:
2020-03-01
Published:
2020-12-01
Online:
2020-12-17
Contact:
Zheng Chen,Mingli Qin
Zheng Chen, Mingli Qin, Junjun Yang, Lin Zhang, Baorui Jia, Xuanhui Qu. Effect of La2O3 addition on the synthesis of tungsten nanopowder via combustion-based method[J]. J. Mater. Sci. Technol., 2020, 58: 24-33.
Sample | Theoretical value (wt%) | Measured value (wt%) |
---|---|---|
WL05 | 0.43 | 0.42 |
WL10 | 0.85 | 0.76 |
WL20 | 1.71 | 1.77 |
WL50 | 4.26 | 3.49 |
Table 1 Theoretical and measured La content values in as-prepared W nanopowers.
Sample | Theoretical value (wt%) | Measured value (wt%) |
---|---|---|
WL05 | 0.43 | 0.42 |
WL10 | 0.85 | 0.76 |
WL20 | 1.71 | 1.77 |
WL50 | 4.26 | 3.49 |
Samples | Theorical density (g/cm3) | Density (g/cm3) | Relative density (%) | Grain size (μm) | Microhardness (Hv0.2) |
---|---|---|---|---|---|
PW | 19.30 | 19.0 ± 0.17 | 98.5 ± 0.87 | 5.32 ± 2.00 | 536.3 ± 10.64 |
WL05 | 19.13 | 18.70 ± 0.13 | 97.6 ± 0.67 | 0.97 ± 0.32 | 580.7 ± 13.48 |
WL10 | 18.93 | 18.40 ± 0.04 | 97.1 ± 0.23 | 0.93 ± 0.35 | 632.1 ± 29.58 |
WL20 | 18.57 | 18.01 ± 0.08 | 97.0 ± 0.42 | 0.47 ± 0.16 | 739.3 ± 17.57 |
WL50 | 17.57 (18.06a) | 17.20 ± 0.02 | 97.9 ± 0.09 (95.2a) | 0.72 ± 0.29 | 677.5 ± 13.77 |
Table 2 Density, relative density, grain size and microhardness of all sintered samples.
Samples | Theorical density (g/cm3) | Density (g/cm3) | Relative density (%) | Grain size (μm) | Microhardness (Hv0.2) |
---|---|---|---|---|---|
PW | 19.30 | 19.0 ± 0.17 | 98.5 ± 0.87 | 5.32 ± 2.00 | 536.3 ± 10.64 |
WL05 | 19.13 | 18.70 ± 0.13 | 97.6 ± 0.67 | 0.97 ± 0.32 | 580.7 ± 13.48 |
WL10 | 18.93 | 18.40 ± 0.04 | 97.1 ± 0.23 | 0.93 ± 0.35 | 632.1 ± 29.58 |
WL20 | 18.57 | 18.01 ± 0.08 | 97.0 ± 0.42 | 0.47 ± 0.16 | 739.3 ± 17.57 |
WL50 | 17.57 (18.06a) | 17.20 ± 0.02 | 97.9 ± 0.09 (95.2a) | 0.72 ± 0.29 | 677.5 ± 13.77 |
Sample | Sintering temperature (℃) | Relative density (%) | Grain size (μm) | Ref |
---|---|---|---|---|
W-0.6 wt%La2O3 | 2200 | ~97 | ~18 | [ |
W-0.3 wt%Y2O3 | 1800~2000 | 96-97.5 | 1-2 | [ |
W-0.7 wt%Y2O3 | 1950 | 99.22 | 3-5 | [ |
W | 1650 | 97.6 | 3-5 | [ |
W-16at%W2C | 2200 | - | 5.7 | [ |
W-5 vol%Y2O3 | >2000 | ~95.5 | ~3 | [ |
W | 1100 | 98.1 | 0.585 | [ |
W-2 wt%La2O3 | 1650 | 97.0 | 0.47 | This work |
Table 3 Summary of grain size and microhardness of the pressureless sintered W alloys reported in the literature.
Sample | Sintering temperature (℃) | Relative density (%) | Grain size (μm) | Ref |
---|---|---|---|---|
W-0.6 wt%La2O3 | 2200 | ~97 | ~18 | [ |
W-0.3 wt%Y2O3 | 1800~2000 | 96-97.5 | 1-2 | [ |
W-0.7 wt%Y2O3 | 1950 | 99.22 | 3-5 | [ |
W | 1650 | 97.6 | 3-5 | [ |
W-16at%W2C | 2200 | - | 5.7 | [ |
W-5 vol%Y2O3 | >2000 | ~95.5 | ~3 | [ |
W | 1100 | 98.1 | 0.585 | [ |
W-2 wt%La2O3 | 1650 | 97.0 | 0.47 | This work |
Fig. 10. (a) STEM-HAADF image of WL20; (b) Second-phase particle size distribution; (c)TEM-HAADF image and the corresponding EDX mapping of the (d) W, (e) La and (f) O elements.
[1] | Y. Wang, J. Aktaa, Scripta Mater. 139 (2017) 22-25. |
[2] | L. Huang, L. Jiang, T.D. Topping, C. Dai, X. Wang, R. Carpenter, C. Haines, J.M. Schoenung, Acta Mater. 122 (2017) 19-31. |
[3] | S. Antusch, D.E.J. Armstrong, T.B. Britton, L. Commin, J.S.K.L. Gibson, H. Greuner, J. Hoffmann, W. Knabl, G. Pintsuk, M. Rieth, S.G. Roberts, T. Weingaertner, Nucl. Mater. Energy 3-4 (2015) 22-31. |
[4] | A. Luo, K.S. Shin, D.L. Jacobson, Mater. Sci. Eng. A 148 (1991) 219-229. |
[5] | J. Li, J. Cheng, B. Wei, M. Zhang, L. Luo, Y. Wu, Int. J. Refract. Met. Hard Mater. 66 (2017) 226-233. |
[6] | M.A. Yar, S. Wahlberg, H. Bergqvist, H.G. Salem, M. Johnsson, M. Muhammed, J. Nucl. Mater. 408 (2011) 129-135. |
[7] | M. Zhao, Z. Zhou, M. Zhong, J. Tan, Y. Lian, X. Liu, J. Nucl. Mater. 470 (2016) 236-243. |
[8] | Z. Dong, N. Liu, Z. Ma, C. Liu, Q. Guo, Y. Liu, J. Alloys Compd. 695 (2017) 2969-2973. |
[9] | Y. Lv, J. Fan, Y. Han, T. Liu, P. Li, H. Yan, J. Alloys Compd. 774 (2019) 1140-1150. |
[10] | Z. Dong, N. Liu, W. Hu, Z. Ma, C. Li, C. Liu, Q. Guo, Y. Liu, J. Mater. Sci. Technol. 36 (2020) 118-127. |
[11] | W. Hu, Z. Dong, L. Yu, Z. Ma, Y. Liu, J. Mater. Sci. Technol. 36 (2020) 84-90. |
[12] | N. Liu, Z. Dong, Z. Ma, Z. Qian, L. Ma, L. Yu, Y. Liu, Acta Metall. Sin. (Engl. Lett.) (2020) 1-6. |
[13] | F. Xiao, L. Xu, Y. Zhou, K. Pan, J. Li, W. Liu, S. Wei, J. Alloys Compd. 708 (2017) 202-212. |
[14] | M. Battabyal, R. Schäublin, P. Spätig, N. Baluc, Mater. Sci. Eng. A 538 (2012) 53-57. |
[15] | M. Battabyal, R. Schäublin, P. Spätig, M. Walter, M. Rieth, N. Baluc, J. Nucl. Mater. 442 (2013) S225-S228. |
[16] | S. Wang, J. Zhang, L.M. Luo, X. Zan, Q. Xu, X.-Y. Zhu, K. Tokunaga, Y.C. Wu, Powder Technol. 301 (2016) 65-69. |
[17] | M. Xia, Q. Yan, L. Xu, H. Guo, L. Zhu, C. Ge, J. Nucl. Mater. 434 (2013) 85-89. |
[18] | J. Fan, Y. Han, P. Li, Z. Sun, Q. Zhou, J. Nucl. Mater. 455 (2014) 717-723. |
[19] | R. Liu, X.P. Wang, T. Hao, C.S. Liu, Q.F. Fang, J. Nucl. Mater. 450 (2014) 69-74. |
[20] | R. Liu, Z.M. Xie, Q.F. Fang, T. Zhang, X.P. Wang, T. Hao, C.S. Liu, Y. Dai, J. Alloys Compd. 657 (2016) 73-80. |
[21] |
L. Xu, Q. Yan, M. Xia, L. Zhu, Int. J. Refract. Met. Hard Mater. 36 (2013) 238-242.
DOI URL |
[22] | J. Kingsley, K. Patil, Mater. Lett. 6 (1988) 427-432. |
[23] | F.T. Li, J. Ran, M. Jaroniec, S.Z. Qiao, Nanoscale 7 (2015) 17590-17610. |
[24] |
A. Varma, A.S. Mukasyan, A.S. Rogachev, K.V. Manukyan, Chem. Rev. 116 (2016) 14493-14586.
URL PMID |
[25] | M. Huang, M. Qin, D. Zhang, Y. Wang, Q. Wan, Q. He, B. Jia, X. Qu, J. Alloys Compd. 695 (2017) 1870-1877. |
[26] | M. Qin, Z. Chen, P. Chen, S. Zhao, R. Li, J. Ma, X. Qu, Int. J. Refract. Met. Hard Mater. 68 (2017) 145-150. |
[27] | M. Wu, M. Zhang, T. Lv, M. Guo, J. Li, C.A. Okonkwo, Q. Liu, L. Jia, Appl. Catal. A 547 (2017) 96-104. |
[28] |
A. Yadav, A. Lokhande, J. Kim, C. Lokhande, J. Alloys Compd. 723 (2017) 880-886.
DOI URL |
[29] | M. Miah, S. Bhattacharya, D. Dinda, S.K. Saha, Electrochim. Acta 260 (2018) 449-458. |
[30] | Y.A. Teterin, A.Y. Teterin, A.M. Lebedev, K.E. Ivanov, J. Electron Spectrosc. Relat. Phenom. 137-140 (2004) 607-612. |
[31] | P. Fleming, R.A. Farrell, J.D. Holmes, M.A. Morris, J. Am. Ceram. Soc. 93 (2010) 1187-1194. |
[32] |
F. Dong, X. Xiao, G. Jiang, Y. Zhang, W. Cui, J. Ma, Phys. Chem. Chem. Phys. 17 (2015) 16058-16066.
DOI URL PMID |
[33] | L. Olmos, C.L. Martin, D. Bouvard, Powder Technol. 190 (2009) 134-140. |
[34] | S.S. Razavi-Tousi, R. Yazdani-Rad, S.A. Manafi, Mater. Sci. Eng. A 528 (2011) 1105-1110. |
[35] | S. Antusch, P. Norajitra, V. Piotter, H.J. Ritzhaupt-Kleissl, J.Nucl. Mater. 417 (2011) 533-535. |
[36] | P. Jenuš, A. Iveković, M. Kocen, A. Šestan, S. Novak, Ceram. Int. 45 (2019) 7995-7999. |
[37] | D.T. Blagoeva, J. Opschoor, J.G. van der Laan, C. Sârbu, G. Pintsuk, M. Jong, T. Bakker, P. Ten Pierick, H. Nolles, J. Nucl. Mater. 442 (2013) S198-S203. |
[38] | X. Wang, Z. Zak Fang, M. Koopman, Int. J. Refract. Met. Hard Mater. 53 (2015) 134-138. |
[39] | G. Gottstein, L. Shvindlerman, Acta Metall. Mater. 41 (1993) 3267-3275. |
[40] | L. Jiang, H. Wen, H. Yang, T. Hu, T. Topping, D. Zhang, E.J. Lavernia, J.M. Schoenung, Acta Mater. 89 (2015) 327-343. |
[1] | Lin Lu, Qianqian Liu. Synergetic effects of photo-oxidation and biodegradation on failure behavior of polyester coating in tropical rain forest atmosphere [J]. J. Mater. Sci. Technol., 2021, 64(0): 195-202. |
[2] | Hanyu Zhao, Yupeng Sun, Lu Yin, Zhao Yuan, Yiliang Lan, Dake Xu, Chunguang Yang, Ke Yang. Improved corrosion resistance and biofilm inhibition ability of copper-bearing 304 stainless steel against oral microaerobic Streptococcus mutans [J]. J. Mater. Sci. Technol., 2021, 66(0): 112-120. |
[3] | Zhong Li, Jie Wang, Yizhe Dong, Dake Xu, Xianhui Zhang, Jianhua Wu, Tingyue Gu, Fuhui Wang. Synergistic effect of chloride ion and Shewanella algae accelerates the corrosion of Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 71(0): 177-185. |
[4] | Jiashun Shi, Suchun Wang, Xin Cheng, Shiqiang Chen, Guangzhou Liu. Constructing zwitterionic nanofiber film for anti-adhesion of marine corrosive microorganisms [J]. J. Mater. Sci. Technol., 2021, 70(0): 145-155. |
[5] | Di Wang, Mahmoud Ramadan, Sith Kumseranee, Suchada Punpruk, Tingyue Gu. Mitigating microbiologically influenced corrosion of an oilfield biofilm consortium on carbon steel in enriched hydrotest fluid using 2,2-dibromo-3-nitrilopropionamide (DBNPA) enhanced by a 14-mer peptide [J]. J. Mater. Sci. Technol., 2020, 57(0): 146-152. |
[6] | Hongchang Qian, Lingwei Ma, Dawei Zhang, Ziyu Li, Luyao Huang, Yuntian Lou, Cuiwei Du. Microbiologically influenced corrosion of 304 stainless steel by halophilic archaea Natronorubrum tibetense [J]. J. Mater. Sci. Technol., 2020, 46(0): 12-20. |
[7] | Enze Zhou, Jianjun Wang, Masoumeh Moradi, Huabing Li, Dake Xu, Yuntian Lou, Jinheng Luo, Lifeng Li, Yulei Wang, Zhenguo Yang, Fuhui Wang, Jessica A. Smith. Methanogenic archaea and sulfate reducing bacteria induce severe corrosion of steel pipelines after hydrostatic testing [J]. J. Mater. Sci. Technol., 2020, 48(0): 72-83. |
[8] | Yanan Pu, Wenwen Dou, Tingyue Gu, Shiya Tang, Xiaomei Han, Shougang Chen. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2020, 47(0): 10-19. |
[9] | Yuqiao Dong, Yassir Lekbach, Zhong Li, Dake Xu, Soumya El Abed, Saad Ibnsouda Koraichi, Fuhui Wang. Microbiologically influenced corrosion of 304L stainless steel caused by an alga associated bacterium Halomonas titanicae [J]. J. Mater. Sci. Technol., 2020, 37(0): 200-206. |
[10] | Tingyue Gu, Ru Jia, Tuba Unsal, Dake Xu. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria [J]. J. Mater. Sci. Technol., 2019, 35(4): 631-636. |
[11] | Fuliang Ma, Jinlong Li, Zhixiang Zeng, Yimin Gao. Tribocorrosion behavior in artificial seawater and anti-microbiologically influenced corrosion properties of TiSiN-Cu coating on F690 steel [J]. J. Mater. Sci. Technol., 2019, 35(3): 448-459. |
[12] | Dan Liu, Ru Jia, Dake Xu, Hongying Yang, Ying Zhao, M. saleem Khan, Songtao Huang, Jiankang Wen, Ke Yang, Tingyue Gu. Biofilm inhibition and corrosion resistance of 2205-Cu duplex stainless steel against acid producing bacterium Acetobacter aceti [J]. J. Mater. Sci. Technol., 2019, 35(11): 2494-2502. |
[13] | M. Saleem Khan, Zhong Li, Ke Yang, Dake Xu, Chunguang Yang, Dan Liu, Yassir Lekbach, Enze Zhou, Phuri Kalnaowakul. Microbiologically influenced corrosion of titanium caused by aerobic marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2019, 35(1): 216-222. |
[14] | Dake Xu, Enze Zhou, Ying Zhao, Huabing Li, Zhiyong Liu, Dawei Zhang, Chunguang Yang, Hai Lin, Xiaogang Li, Ke Yang. Enhanced resistance of 2205 Cu-bearing duplex stainless steel towards microbiologically influenced corrosion by marine aerobic Pseudomonas aeruginosa biofilms [J]. J. Mater. Sci. Technol., 2018, 34(8): 1325-1336. |
[15] | Xianbo Shi, Wei Yan, Dake Xu, Maocheng Yan, Chunguang Yang, Yiyin Shan, Ke Yang. Microbial corrosion resistance of a novel Cu-bearing pipeline steel [J]. J. Mater. Sci. Technol., 2018, 34(12): 2480-2491. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||