J. Mater. Sci. Technol. ›› 2018, Vol. 34 ›› Issue (11): 2042-2050.DOI: 10.1016/j.jmst.2018.02.019
Special Issue: 2017-2018年Mg合金专题
• Orginal Article • Previous Articles Next Articles
Wenke Wang, Wenzhen Chen*(), Wencong Zhang*(
), Guorong Cui, Erde Wang
Received:
2017-11-24
Revised:
2018-01-01
Accepted:
2018-01-15
Online:
2018-11-20
Published:
2018-11-26
Contact:
Chen Wenzhen,Zhang Wencong
Wenke Wang, Wenzhen Chen, Wencong Zhang, Guorong Cui, Erde Wang. Weakened anisotropy of mechanical properties in rolled ZK60 magnesium alloy sheets with elevated deformation temperature[J]. J. Mater. Sci. Technol., 2018, 34(11): 2042-2050.
Fig. 2. Microstructural characteristics and texture state of as-rolled ZK60 magnesium alloy sheets in RD-TD plane: (a) inverse pole figure map; (b) grain size distribution; (c) frequency vs misorientation map; (d) (0002), (10$\bar{1}$0) and (11$\bar{2}$0) pole figures; (e) distribution of (0002) pole density along the RD and the TD.
Fig. 3. Mechanical behaviors for ZK60 magnesium alloy sheets along RD and TD at various deformation temperatures: (a) true stress-strain curves; (b) variations of yield stress at various deformation temperatures.
Temperature (°C) | σs (MPa) | σp (MPa) | εp (%) | |||
---|---|---|---|---|---|---|
RD | TD | RD | TD | RD | TD | |
As-rolled | 226.0 ± 5.0 | 178.0 ± 5.0 | 315.0 ± 3.0 | 323.0 ± 3.0 | 14.0 ± 1.0 | 20.0 ± 1.0 |
100 °C | 127.0 ± 5.0 | 117.0 ± 4.0 | 170.0 ± 3.0 | 155.0 ± 3.0 | 2.9 ± 0.2 | 2.8 ± 0.3 |
200 °C | 34.0 ± 4.0 | 35.0 ± 2.0 | 44.0 ± 2.0 | 43.0 ± 1.0 | 1.5 ± 0.1 | 1.4 ± 0.1 |
300 °C | 9.1 ± 0.8 | 9.4 ± 1.1 | 10.5 ± 1.1 | 10.3 ± 1.2 | 0.5 ± 0 | 0.4 ± 0 |
Table 1 Summarized mechanical properties of ZK60 magnesium alloy sheets at various deformation temperatures (σs: yield stress; σp: peak tension stress; εp: elongation determined by the σp).
Temperature (°C) | σs (MPa) | σp (MPa) | εp (%) | |||
---|---|---|---|---|---|---|
RD | TD | RD | TD | RD | TD | |
As-rolled | 226.0 ± 5.0 | 178.0 ± 5.0 | 315.0 ± 3.0 | 323.0 ± 3.0 | 14.0 ± 1.0 | 20.0 ± 1.0 |
100 °C | 127.0 ± 5.0 | 117.0 ± 4.0 | 170.0 ± 3.0 | 155.0 ± 3.0 | 2.9 ± 0.2 | 2.8 ± 0.3 |
200 °C | 34.0 ± 4.0 | 35.0 ± 2.0 | 44.0 ± 2.0 | 43.0 ± 1.0 | 1.5 ± 0.1 | 1.4 ± 0.1 |
300 °C | 9.1 ± 0.8 | 9.4 ± 1.1 | 10.5 ± 1.1 | 10.3 ± 1.2 | 0.5 ± 0 | 0.4 ± 0 |
Fig. 5. Microstructural characteristics using IQ maps for RD (a, c, e) and TD (b, d, f) samples at 100 °C (a, b), 200 °C (c, d) and 300 °C (e, f). (IQ map: mapping the IQ obtained for each point in an OIM scan onto a gray scale; the grains are defined as the sets of connected and similarly oriented points within the tolerance angle of 5°; SGB: sub-grain boundary with misorientation less than 5° shown in red; LAGBs: low angle grain boundaries between 5° and 15° shown in yellow; HAGBs: high angle grain boundaries higher than 15° shown in blue).
Fig. 6. Grain size distribution in RD and TD samples at various deformation temperatures (a) and variations of average grain size at different deformation temperatures (b).
Fig. 7. Grain average misorientation (GAM) maps for distributions of dynamic recrystallization structure and deformation structure for RD (a, c, e) and TD (b, d, f) samples at deformation temperatures of 100 °C (a, b), 200 °C (c, d) and 300 °C (e, f).
Fig. 8. (0002) and (10$\bar{1}$0) pole figures after tension deformation for RD (a, c, e) and TD (b, d, f) samples at temperatures of 100 °C (a, b), 200 °C (c, d) and 300 °C (e, f).
Fig. 11. Calculated results of friction stress σ0 (a) and fraction (b) of participating for each deformation mode at each angle λ between tension loading direction and normal direction of slip plane.
|
[1] | Qiyu Liao, Yanchao Jiang, Qichi Le, Xingrui Chen, Chunlong Cheng, Ke Hu, Dandan Li. Hot deformation behavior and processing map development of AZ110 alloy with and without addition of La-rich Mish Metal [J]. J. Mater. Sci. Technol., 2021, 61(0): 1-15. |
[2] | Jian Yang Zhang, Bin Xu, Naeem ul Haq Tariq, Ming Yue Sun, Dian Zhong Li, Yi Yi Li. Effect of strain rate on plastic deformation bonding behavior of Ni-based superalloys [J]. J. Mater. Sci. Technol., 2020, 40(0): 54-63. |
[3] | XiTing Zhong, Lei Wang, LinKe Huang, Feng Liu. Transition of dynamic recrystallization mechanism during hot deformation of Incoloy 028 alloy [J]. J. Mater. Sci. Technol., 2020, 42(0): 241-253. |
[4] | Biwu Zhu, Xiao Liu, Chao Xie, Jing Su, Pengcheng Guo, Changping Tang, Wenhui Liu. Unveiling the underlying mechanism of forming edge cracks upon high strain-rate rolling of magnesium alloy [J]. J. Mater. Sci. Technol., 2020, 50(0): 59-65. |
[5] | Wei Chen, Hande Wang, Y.C. Lin, Xiaoyong Zhang, Chao Chen, Yaping Lv, Kechao Zhou. The dynamic responses of lamellar and equiaxed near β-Ti alloys subjected to multi-pass cross rolling [J]. J. Mater. Sci. Technol., 2020, 43(0): 220-229. |
[6] | Miao Cao, Qi Zhang, Ke Huang, Xinjian Wang, Botao Chang, Lei Cai. Microstructural evolution and deformation behavior of copper alloy during rheoforging process [J]. J. Mater. Sci. Technol., 2020, 42(0): 17-27. |
[7] | Liying Zhou, Wenxiong Chen, Shaobo Feng, Mingyue Sun, Bin Xu, Dianzhong Li. Dynamic recrystallization behavior and interfacial bonding mechanism of 14Cr ferrite steel during hot deformation bonding [J]. J. Mater. Sci. Technol., 2020, 43(0): 92-103. |
[8] | Jian Yang Zhang, Bin Xu, Naeemul Haq Tariq, MingYue Sun, DianZhong Li, Yi Yi Li. Microstructure evolutions and interfacial bonding behavior of Ni-based superalloys during solid state plastic deformation bonding [J]. J. Mater. Sci. Technol., 2020, 46(0): 1-11. |
[9] | Dan Jia, Wenru Sun, Dongsheng Xu, Fang Liu. Dynamic recrystallization behavior of GH4169G alloy during hot compressive deformation [J]. J. Mater. Sci. Technol., 2019, 35(9): 1851-1859. |
[10] | Zhong-Zheng Jin, Xiu-Ming Cheng, Min Zha, Jian Rong, Hang Zhang, Jin-Guo Wang, Cheng Wang, Zhi-Gang Li, Hui-Yuan Wang. Effects of Mg17Al12 second phase particles on twinning-induced recrystallization behavior in Mg-Al-Zn alloys during gradient hot rolling [J]. J. Mater. Sci. Technol., 2019, 35(9): 2017-2026. |
[11] | Liying Zhou, Shaobo Feng, Mingyue Sun, Bin Xu, Dianzhong Li. Interfacial microstructure evolution and bonding mechanisms of 14YWT alloys produced by hot compression bonding [J]. J. Mater. Sci. Technol., 2019, 35(8): 1671-1680. |
[12] | Weili Cheng, Yang Bai, Shichao Ma, Lifei Wang, Hongxia Wang, Hui Yu. Hot deformation behavior and workability characteristic of a fine-grained Mg-8Sn-2Zn-2Al alloy with processing map [J]. J. Mater. Sci. Technol., 2019, 35(6): 1198-1209. |
[13] | X.H. Zeng, P. Xue, L.H. Wu, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructural evolution of aluminum alloy during friction stir welding under different tool rotation rates and cooling conditions [J]. J. Mater. Sci. Technol., 2019, 35(6): 972-981. |
[14] | Naeem ul Haq Tariq, Lawrence Gyansah, Xiang Qiu, Chunni Jia, Hasan Bin Awais, Chengwu Zheng, Hao Du, Jiqiang Wang, Tianying Xiong. Achieving strength-ductility synergy in cold spray additively manufactured Al/B4C composites through a hybrid post-deposition treatment [J]. J. Mater. Sci. Technol., 2019, 35(6): 1053-1063. |
[15] | Y.F. Sun, H. Fujii, Y. Sato, Y. Morisada. Friction stir spot welding of SPCC low carbon steel plates at extremely low welding temperature [J]. J. Mater. Sci. Technol., 2019, 35(5): 733-741. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||