J. Mater. Sci. Technol. ›› 2018, Vol. 34 ›› Issue (11): 2035-2041.DOI: 10.1016/j.jmst.2018.03.001
• Orginal Article • Previous Articles Next Articles
Xi Nie, Shuai Dong, Fenghua Wang, Li Jin, Jie Dong*(
)
Received:2017-12-06
Revised:2018-02-07
Accepted:2018-02-08
Online:2018-11-20
Published:2018-11-26
Contact:
Dong Jie
Xi Nie, Shuai Dong, Fenghua Wang, Li Jin, Jie Dong. Effects of holding time and Zener-Hollomon parameters on deformation behavior of cast Mg-8Gd-3Y alloy during double-pass hot compression[J]. J. Mater. Sci. Technol., 2018, 34(11): 2035-2041.
Fig. 3. Stress-strain curve (a) and hardening rate-stress curve (b) under double-pass hot compression at temperature T = 350 °C and strain rate$\dot{\varepsilon}$ = 0.1 s-1.
Fig. 4. Stress-strain curves under double pass hot compression tests at different deformation conditions. (a) ε1 = 0.6, $\dot{\varepsilon}$= 0.1 s-1, (b) ε1 = 0.6, $\dot{\varepsilon}$= 0.01 s-1, (c) ε1 = 0.3, $\dot{\varepsilon}$= 0.1 s-1, (d) ε1 = 0.3, $\dot{\varepsilon}$= 0.01 s-1.
Fig. 5. Stress-strain curves under double-pass hot compression at different holding time. (a) $\dot{\varepsilon}$ = 0.1 s-1, (b) $\dot{\varepsilon}$ = 0.01 s-1.
Fig. 6. Optical microstructure after first pass deformation under different holding time at 350 °C and strain rate of 0.1 s-1. (a)Δt = 0 s, (b)Δt = 60 s, (c) Δt = 120 s, (d)Δt = 180 s. The strain of first pass deformation is set as 0.6.
Fig. 8. Optical microstructure under different first pass strains and strain rates with temperature T = 350 °C and holding time Δt = 120 s. (a) ε1 = 0.6, $\dot{\varepsilon}$ = 0.1 s-1, (b) ε1 = 0.6, $\dot{\varepsilon}$ = 0.01 s-1, (c) ε1 = 0.3, $\dot{\varepsilon}$ = 0.1 s-1, (d) ε1 = 0.3, $\dot{\varepsilon}$ = 0.01 s-1.
Fig. 9. Hardening fraction (a) and MDRX fraction (b) under different holding time at temperature of 350 °C and strain rate of 0.1 s-1. Strain of first pass deformation is set as 0.6.
|
| [1] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
| [2] | Jia Li, Haotian Chen, Hui Feng, Qihong Fang, Yong Liu, Feng Liu, Hong Wu, Peter K Liaw. Microstructure evolution and deformation mechanism of amorphous/crystalline high-entropy-alloy composites [J]. J. Mater. Sci. Technol., 2020, 54(0): 14-19. |
| [3] | T. Cai, K.Q. Li, Z.J. Zhang, P. Zhang, R. Liu, J.B. Yang, Z.F. Zhang. Predicting the variation of stacking fault energy for binary Cu alloys by first-principles calculations [J]. J. Mater. Sci. Technol., 2020, 53(0): 61-65. |
| [4] | Pengfei Gao, Mingwang Fu, Mei Zhan, Zhenni Lei, Yanxi Li. Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: A review [J]. J. Mater. Sci. Technol., 2020, 39(0): 56-73. |
| [5] | Liu Liu, Jie Meng, Jinlai Liu, Mingke Zou, Haifeng Zhang, Xudong Sun, Yizhou Zhou. Influences of Re on low-cycle fatigue behaviors of single crystal superalloys at intermediate temperature [J]. J. Mater. Sci. Technol., 2019, 35(9): 1917-1924. |
| [6] | W.H. Wang, D. Wu, R.S. Chen, X.N. Zhang. Effect of solute atom concentration and precipitates on serrated flow in Mg-3Nd-Zn alloy [J]. J. Mater. Sci. Technol., 2018, 34(7): 1236-1242. |
| [7] | Guangcai Ma, Zhengwang Zhu, Zheng Wang, Haifeng Zhang. Deformation Behavior of the Zr53.5Cu26.5Ni5Al12Ag3 Bulk Metallic Glass Over a Wide Range of Strain Rate and Temperatures [J]. J. Mater. Sci. Technol., 2015, 31(9): 941-945. |
| [8] | Jing Han, Hongtao Chen, Mingyu Li, Chunqing Wang. Shear Deformation Behaviors of Sn3.5Ag Lead-free Solder Samples [J]. J. Mater. Sci. Technol., 2013, 29(5): 471-479. |
| [9] | Gang Wang, Lei Xu, Yong Wang, Zhuo Zheng, Yuyou Cui, Rui Yang. Processing Maps for Hot Working Behavior of a PM TiAl Alloy [J]. J Mater Sci Technol, 2011, 27(10): 893-898. |
| [10] | Chong TIAN, Jinsong ZHANG, Xiaoming CAO, Qiang LIU, Wanping HU. High Strength Silicon Carbide Foams and Their Deformation Behavior [J]. J Mater Sci Technol, 2006, 22(02): 269-272. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
