J. Mater. Sci. Technol. ›› 2023, Vol. 138: 183-192.DOI: 10.1016/j.jmst.2022.07.050
Previous Articles Next Articles
Tong Xu, Mingming Jiang*, Peng Wan, Yang Liu, Caixia Kan*, Daning Shi*
Received:
2022-05-24
Revised:
2022-07-04
Accepted:
2022-07-19
Published:
2023-03-01
Online:
2023-03-03
Contact:
* E-mail addresses:. mmjiang@nuaa.edu.cn (M. Jiang), cxkan@nuaa.edu.cn (C. Kan), shi@nuaa.edu.cn (D. Shi)
Tong Xu, Mingming Jiang, Peng Wan, Yang Liu, Caixia Kan, Daning Shi. High-performance self-powered ultraviolet photodetector in SnO2 microwire/p-GaN heterojunction using graphene as charge collection medium[J]. J. Mater. Sci. Technol., 2023, 138: 183-192.
[1] Y. Zhang, F. Cao, S.Y. Li, X.Y. Liu, L.X. Kang, L.M. Wu, X.S. Fang, J. Mater. Sci.Technol. 129 (2022) 108-114. [2] L.X. Su, W. Yang, J. Cai, H.Y. Chen, X.S. Fang, Small 13 (2017) 1701687. [3] Z.Q. Li, Z.L. Li, Z.F. Shi, X.S. Fang, Adv. Funct. Mater. 30 (2020) 2002634. [4] Z.Q. Li, E.L. Hong, X.Y. Zhang, M. Deng, X.S. Fang, J. Phys. Chem.Lett. 13 (2022) 1215-1225. [5] H. Liu, C.L. Zuo, Z.L. Li, X.Y. Liu, X.S. Fang, Adv. Electron. Mater. 7 (2021) 2100706. [6] S.Z. Li, S.X. Wang, K. Liu, N.G. Zhang, Z.Y. Zhong, H. Long, G.J. Fang, Appl. Phys. A Mater.Sci. Process. 119 (2015) 1561-1566. [7] Y.H. Chen, L.X. Su, M.M. Jiang, X.S. Fang, J. Mater. Sci.Technol. 105 (2022) 259-265. [8] F. Cao, L. Su, T.T. Yan, Z.Q. Li, D.V. Shtansky, X.S. Fang, Adv. Electron. Mater. 8 (2022) 2101373. [9] Z.Y. Yan, S. Li, J.Y. Yue, X.Q. Ji, Z. Liu, Y.T. Yang, P.G. Li, Z.P. Wu, Y.F. Guo, W.H. Tang, J. Mater. Chem. 9 (2021) 14788-14798. [10] Z.Q. Zheng, J.D. Yao, L.F. Zhu, W. Jiang, B. Wang, G.W. Yang, J.B. Li, New Horiz. Constr. Mater. 5 (2018) 727-737. [11] P. Chetri, J.C. Dhar, Mater. Sci. Semicond. Process. 100 (2019) 123-129. [12] J. Cai, X.J. Xu, L.X. Su, W. Yang, H.Y. Chen, Y. Zhang, X.S. Fang, Adv. Opt. Mater. 6 (2018) 1800213. [13] Y.C. Chen, K.K. Zhang, X. Yang, X.X. Chen, J.L. Sun, Q. Zhao, K.Y. Li, C.X. Shan, J. Phys.D-Appl. Phys. 53 (2020) 484001. [14] P. Wan, M.M. Jiang, T. Xu, Y. Liu, C.X. Kan, J. Mater. Sci.Technol. 93 (2021) 33-40. [15] X.J. Hou, X.F. Wang, B. Liu, Q.F. Wang, Z.R. Wang, D. Chen, G.Z. Shen, Chem- ElectroChem 1 (2014) 108-115. [16] Z.L. Li, Z.Q. Li, C.L. Zuo, X.S. Fang, Adv. Mater. 34 (2022) 2109083. [17] S.Q. Hu, Q. Zhang, X.G. Luo, X.T. Zhang, T. Wang, Y.C. Cheng, W.Q. Jie, J.L. Zhao, T. Mei, X.T. Gan, Nanoscale 12 (2020) 4094-4100. [18] R.T. Tung, Appl. Phys. Rev. 1 (2014) 011304. [19] L.Z. Luo, Y.X. Huang, K.M. Cheng, A. Alhassan, M. Almana, L.B. Tang, Z.M. Wang, J. Wu, Light Sci. Appl. 10 (2021) 177. [20] J.X. Chen, Z.L. Li, F.L. Ni, W.X. Ouyang, X.S. Fang, Mater. Horiz. 7 (2020) 1828-1833. [21] S. Oh, C.K. Kim, J. Kim, ACS Photonics 5 (2018) 1123-1128. [22] I.J. Park, T.I. Kim, T. Yoon, S. Kang, H. Cho, N.S. Cho, J.I. Lee, T.S. Kim, S.Y. Choi, Adv. Funct. Mater. 28 (2018) 1704435. [23] D. Wang, A.E.L.Allcca, T.F. Chung, A.V. Kildishev, Y.P. Chen, A. Boltasseva, V.M. Shalaev, Light Sci. Appl. 9 (2020) 126. [24] H. Shin, B.K. Sharma, S.W. Lee, J.B. Lee, M. Choi, L. Hu, C. Park, J.H. Choi, T.W. Kim, J.H. Ahn, ACS Appl. Mater. Interfaces 11 (2019) 14222- 14228. [25] L.Q. Tao, K.N. Zhang, H. Tian, Y. Liu, D.Y. Wang, Y.Q. Chen, Y. Yang, T.L. Ren, ACS Nano 11 (2017) 8790-8795. [26] H. Park, S. Chang, X. Zhou, J. Kong, T. Palacios, Nano Lett. 14 (2014) 5148-5154. [27] J.W. Jo, J.U. Lee, W.H. Jo, Polym. Int. 64 (2015) 1676-1684. [28] K. Thiyagarajan, B. Saravanakumar, R. Mohan, S.J. Kim, ACS Appl. Mater. Inter-faces 5 (2013) 6443-6446. [29] Z.S. Wu, L.L. Xue, W.C. Ren, F. Li, L. Wen, H.M. Cheng, Adv. Funct. Mater. 22 (2012) 3290-3297. [30] Y. Zhang, Q.H. Zou, H.S. Hsu, S. Raina, Y.X. Xu, J.B. Kang, J. Chen, S.Z. Deng, N.S. Xu, W.P. Kang, ACS Appl. Mater. Interfaces 8 (2016) 7363-7369. [31] B. Nie, J.G. Hu, L.B. Luo, C. Xie, L.H. Zeng, P. Lv, F.Z. Li, J.S. Jie, M. Feng, C.Y. Wu, Y.Q. Yu, S.H. Yu, Small 9 (2013) 2872-2879. [32] X.Q. Chen, K. Shehzad, L. Gao, M.S. Long, H. Guo, S.C. Qin, X.M. Wang, F.Q. Wang, Y. Shi, W.D. Hu, Y. Xu, X.R. Wang, Adv. Mater. 32 (2020) 1902039. [33] J.S. Miao, W.D. Hu, N. Guo, Z.Y. Lu, X.Q. Liu, L. Liao, P.P. Chen, T. Jiang, S.W. Wu, J.C. Ho, L. Wang, X.S. Chen, W. Lu, Small 11 (2015) 936-942. [34] D.Y. Chen, Y. Xin, B. Lu, X.H. Pan, J.Y. Huang, H.P. He, Z.Z. Ye, Appl. Surf. Sci. 529 (2020) 147087. [35] R.J. Tian, X.T. Gan, C. Li, X.Q. Chen, S.Q. Hu, L.P. Gu, D. Van Thourhout, A. Castel-lanos-Gomez, Z.P. Sun, J.L. Zhao, Light Sci. Appl. 11 (2022) 101. [36] P.Q. Wang, C.C. Jia, Y. Huang, X.F. Duan, Matter 4 (2021) 552-581. [37] L.X. Su, Y.Q. Zuo, J. Xie, InfoMat 3 (2021) 598-610. [38] H.Y. Yang, S.F. Yu, H.K. Liang, S.P. Lau, S.S. Pramana, C. Ferraris, C.W. Cheng, H.J. Fan, ACS Appl. Mater. Interfaces 2 (2010) 1191-1194. [39] W. Tian, T.Y. Zhai, C. Zhang, S.L. Li, X. Wang, F. Liu, D.Q. Liu, X.K. Cai, K. Tsuk-agoshi, D.Golberg, Y. Bando, Adv. Mater. 25 (2013) 4625-4630. [40] G.K. Dalapati, H. Sharma, A. Guchhait, N. Chakrabarty, P. Bamola, Q. Liu, G. Saianand, A.M.S.Krishna, S. Mukhopadhyay, A.Dey, T.K.S. Wong, S. Zhuk, S. Ghosh, S. Chakrabortty, C. Mahata, S. Biring, A. Kumar, C.S. Ribeiro, S. Ra-makrishna, A.K. Chakraborty, S. Krishnamurthy, P. Sonar, M. Sharma, J. Mater. Chem. 9 (2021) 16621-16684. [41] Y. Zhang, W.X. Xu, X.J. Xu, J. Cai, W. Yang, X.S. Fang, J. Phys. Chem.Lett. 10 (2019) 836-841. [42] S. Praveen, S. Veeralingam, S. Badhulika, Adv. Mater. Interfaces 8 (2021) 2100373. [43] M.M. Jiang, G.H. He, H.Y. Chen, Z.Z. Zhang, L.X. Zheng, C.X. Shan, D.Z. Shen, X.S. Fang, Small 13 (2017) 1604034. [44] L. Duan, F.N. He, Y. Tian, B. Sun, J.B. Fan, X.C. Yu, L. Ni, Y. Zhang, Y.N. Chen, W.X. Zhang, ACS Appl. Mater. Interfaces 9 (2017) 8161-8168. [45] L. Li, W. Gao, H.Y. Chen, K. Zhao, P.T. Wen, Y.J. Yang, X.F. Wang, Z.M. Wei, N.J. Huo, J.B. Li, Adv. Electron. Mater. 6 (2020) 1901441. [46] K.W. Liu, M. Sakurai, M. Aono, D.Z. Shen, Adv. Funct. Mater. 25 (2015) 3157-3163. [47] T. Xu, M.M. Jiang, P. Wan, K. Tang, D.N. Shi, C.X. Kan, Photonics Res. 9 (2021) 2475-2485. [48] K.W. Liu, M. Sakurai, M. Aono, ACS Nano 6 (2012) 7209-7215. [49] W.Y. Kong, G.A. Wu, K.Y. Wang, T.F. Zhang, Y.F. Zou, D.D. Wang, L.B. Luo, Adv. Mater. 28 (2016) 10725-10731. [50] Y.Q. Li, D. Zhang, R.C. Lin, Z.J. Zhang, W. Zheng, F. Huang, ACS Appl. Mater. Interfaces 11 (2019) 1013-1020. [51] Y.F. Hao, Y.Y. Wang, L. Wang, Z.H. Ni, Z.Q. Wang, R. Wang, C.K. Koo, Z.X. Shen, J.T.L. Thong, Small 6 (2010) 195-200. [52] H. Kind, H.Q. Yan, B. Messer, M. Law, P.D. Yang, Adv. Mater. 14 (2002) 158-160. [53] L.F. Zhang, P. Wan, T. Xu, C.X. Kan, M.M. Jiang, Opt. Express 29 (2021) 19202-19213. [54] Y. Li, Z.F. Shi, W.Q. Liang, L.T. Wang, S. Li, F. Zhang, Z.Z. Ma, Y. Wang, Y.Z. Tian, D. Wu, X.J. Li, Y.T. Zhang, C.X. Shan, X.S. Fang, New Horiz. Constr. Mater. 7 (2020) 530-540 [55] Y. Zhang, S.Y. Li, Z.L. Li, H. Liu, X.Y. Liu, J.X. Chen, X.S. Fang, Nano Lett. 21 (2021) 382-388. [56] C.C. Wu, B.W. Du, W. Luo, Y. Liu, T.Y. Li, D. Wang, X. Guo, H. Ting, Z. Fang, S.F. Wang, Z.J. Chen, Y.X. Chen, L.X. Xiao, Adv. Opt. Mater. 6 (2018) 1800811. [57] W.E. Mahmoud, Sol. Energy Mater. Sol. Cells 152 (2016) 65-72. [58] T. Oshima, T. Okuno, S. Fujita, Jpn. J. Appl. Phys. 48 (2009) 120207. [59] H. Chen, L.F. Hu, X.S. Fang, L.M. Wu, Adv. Funct. Mater. 22 (2012) 1229-1235. [60] X.D. Li, C.T. Gao, H.G. Duan, B.G. Lu, Y.Q. Wang, L.L. Chen, Z.X. Zhang, X.J. Pan, E.Q. Xie, Small 9 (2013) 2005-2011. |
[1] | Hongru Zhou, Jun Ke, Desheng Xu, Jie Liu. MnWO4 nanorods embedded into amorphous MoSx microsheets in 2D/1D MoSx/MnWO4 S-scheme heterojunction for visible-light photocatalytic water oxidation [J]. J. Mater. Sci. Technol., 2023, 136(0): 169-179. |
[2] | Ruiqi Gao, Junxian Bai, Rongchen Shen, Lei Hao, Can Huang, Lei Wang, Guijie Liang, Peng Zhang, Xin Li. 2D/2D covalent organic framework/CdS Z-scheme heterojunction for enhanced photocatalytic H2 evolution: Insights into interfacial charge transfer mechanism [J]. J. Mater. Sci. Technol., 2023, 137(0): 223-231. |
[3] | Ling Tong, Xiaojiao Guo, Zhangfeng Shen, Lihui Zhou, Jingyi Ma, Xinyu Chen, Honglei Chen, Yin Xia, Chuming Sheng, Saifei Gou, Die Wang, Xinyu Wang, Xiangqi Dong, Yuxuan Zhu, Xinzhi Zhang, David Wei Zhang, Sheng Dai, Xi Li, Peng Zhou, Yangang Wang, Wenzhong Bao. Contact optimisation strategy for wafer-scale field-effect transistors based on two-dimensional semiconductors [J]. J. Mater. Sci. Technol., 2023, 133(0): 230-237. |
[4] | Zhuang Tang, Kai Ning, Zhiyao Fu, Ze Lian, Kangning Wu, Shoudao Huang. Significantly enhanced varistor properties of CaCu3Ti4O12 based ceramics by designing superior grain boundary: Deepening and broadening interface states [J]. J. Mater. Sci. Technol., 2022, 108(0): 82-89. |
[5] | Yuanyuan Zhang, Li Guo, Yingxian Wang, Tianyu Wang, Taoxia Ma, Zhuangzhuang Zhang, Danjun Wang, Bin Xu, Feng Fu. In-situ anion exchange based Bi2S3/OV-Bi2MoO6 heterostructure for efficient ammonia production: A synchronized approach to strengthen NRR and OER reactions [J]. J. Mater. Sci. Technol., 2022, 110(0): 152-160. |
[6] | Chunmei Li, Jinyong Wang, Dongyang Li, Nasir Ilyas, Zhiqiang Yang, Kexin Chen, Peng Gu, Xiangdong Jiang, Deen Gu, Fucai Liu, Yadong Jiang, Wei Li. An oxide-based heterojunction optoelectronic synaptic device with wideband and rapid response performance [J]. J. Mater. Sci. Technol., 2022, 123(0): 159-167. |
[7] | Shijie Li, Mingjie Cai, Chunchun Wang, Yanping Liu, Neng Li, Peng Zhang, Xin Li. Rationally designed Ta3N5/BiOCl S-scheme heterojunction with oxygen vacancies for elimination of tetracycline antibiotic and Cr(VI): Performance, toxicity evaluation and mechanism insight [J]. J. Mater. Sci. Technol., 2022, 123(0): 177-190. |
[8] | Long Sun, Lingling Li, Jiajie Fan, Quanlong Xu, Dekun Ma. Construction of highly active WO3/TpPa-1-COF S-scheme heterojunction toward photocatalytic H2 generation [J]. J. Mater. Sci. Technol., 2022, 123(0): 41-48. |
[9] | Juan Liu, Ning Wang, Fuwei Zheng, Chuanxing Wang, Jing Wang, Baorong Hou, Qianyu Zhao, Yanli Ning, Yiteng Hu. CuInS2/TiO2 heterojunction with elevated photo-electrochemical performance for cathodic protection [J]. J. Mater. Sci. Technol., 2022, 122(0): 211-218. |
[10] | Meng Dai, Zuoli He, Peng Zhang, Xin Li, Shuguang Wang. ZnWO4-ZnIn2S4 S-scheme heterojunction for enhanced photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2022, 122(0): 231-242. |
[11] | Usman Qumar, Jahan Zeb Hassan, Rukhsar Ahmad Bhatti, Ali Raza, Ghazanfar Nazir, Walid Nabgan, Muhammad Ikram. Photocatalysis vs adsorption by metal oxide nanoparticles [J]. J. Mater. Sci. Technol., 2022, 131(0): 122-166. |
[12] | Libo Wang, Xingang Fei, Liuyang Zhang, Jiaguo Yu, Bei Cheng, Yuhua Ma. Solar fuel generation over nature-inspired recyclable TiO2/g-C3N4 S-scheme hierarchical thin-film photocatalyst [J]. J. Mater. Sci. Technol., 2022, 112(0): 1-10. |
[13] | Guojing Wang, Zhiwei Tang, Jing Wang, Shasha Lv, Yunjie Xiang, Feng Li, Chong Liu. Energy band engineering of Bi2O2.33-CdS direct Z-scheme heterojunction for enhanced photocatalytic reduction of CO2 [J]. J. Mater. Sci. Technol., 2022, 111(0): 17-27. |
[14] | Guorong Wang, Yongkang Quan, Kaicheng Yang, Zhiliang Jin. EDA-assisted synthesis of multifunctional snowflake-Cu2S/CdZnS S-scheme heterojunction for improved the photocatalytic hydrogen evolution [J]. J. Mater. Sci. Technol., 2022, 121(0): 28-39. |
[15] | Junxian Bai, Weilin Chen, Rongchen Shen, Zhimin Jiang, Peng Zhang, Wei Liu, Xin Li. Regulating interfacial morphology and charge-carrier utilization of Ti3C2 modified all-sulfide CdS/ZnIn2S4 S-scheme heterojunctions for effective photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2022, 112(0): 85-95. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||