J. Mater. Sci. Technol. ›› 2023, Vol. 137: 223-231.DOI: 10.1016/j.jmst.2022.09.001
• Research Article • Previous Articles Next Articles
Ruiqi Gaoa,1, Junxian Baia,1, Rongchen Shena, Lei Haoa, Can Huanga, Lei Wangb, Guijie Liangb,*, Peng Zhangc, Xin Lia,*
Received:
2022-08-02
Revised:
2022-09-06
Accepted:
2022-09-07
Published:
2023-02-20
Online:
2023-02-15
Contact:
*E-mail addresses: guijie-liang@hotmail.com (G. Liang), Xinli@scau.edu.cn, xinliscau@126.com (X. Li).
About author:
1These authors contributed equally to this work.
Ruiqi Gao, Junxian Bai, Rongchen Shen, Lei Hao, Can Huang, Lei Wang, Guijie Liang, Peng Zhang, Xin Li. 2D/2D covalent organic framework/CdS Z-scheme heterojunction for enhanced photocatalytic H2 evolution: Insights into interfacial charge transfer mechanism[J]. J. Mater. Sci. Technol., 2023, 137: 223-231.
[1] T. Hisatomi, K. Domen, Nat. Catal. 2 (2019) 387-399. [2] J.L. Yang, Y.L. He, H. Ren, H.L. Zhong, J.S. Lin, W.M. Yang, M.D. Li, Z.L. Yang, H. Zhang, Z.Q. Tian, J.F. Li, ACS Catal. 11 (2021) 5047-5053. [3] D.D Gao, J.C. Xu, L.X. Wang, B.C. Zhu, H.G. Yu, J.G. Yu, Adv. Mater. 34 (2022) 2108475. [4] J. Kosco, M. Bidwell, H. Cha, T. Martin, C.T. Howells, M. Sachs, D.H. Anjum, S. Gonzalez Lopez, L. Zou, A. Wadsworth, Nat. Mater. 19 (2020) 559-565. [5] X. Li, J.G. Yu, M. Jaroniec, X.B. Chen, Chem. Rev. 119 (2019) 3962-4179. [6] Z.Z. Liang, R.C. Shen, Y.H. Ng, P. Zhang, Q.J. Xiang, X. Li, J. Mater. Sci.Technol. 56 (2020) 89-121. [7] M.X. Li, R.Q. Guan, J.X. Li, Z. Zhao, J.K. Zhang, C.C. Dong, Y.F. Qi, H.J. Zhai, Chin. J. Struct. Chem. 39 (2020) 1437-1443. [8] X.W. Ma, H.F. Lin, Y.Y. Li, L. Wang, X.P. Pu, X.J. Yi, Chin. J. Struct. Chem. 40 (2021) 7-22. [9] R.C. Shen, D.D. Ren, Y.N. Ding, Y.T. Guan, Y.H. Ng, P. Zhang, X. Li, Sci. China Mater. 63 (2020) 2153-2188. [10] X.H. Li, Y.J. Li, P.F. Zhu, Z.L. Jin, Int. J. Energy Res. 46 (2022) 15589-15601. [11] Y.L. Wu, Y.J. Li, L.J. Zhang, Z.L. Jin, ChemCatChem 14 (2022) 13. [12] R.S. Sprick, B. Bonillo, R. Clowes, P. Guiglion, N.J. Brownbill, B.J. Slater, F. Blanc, M.A. Zwijnenburg, D.J. Adams, A.I. Cooper, Angew. Chem. Int. Ed. 128 (2016) 1824-1828. [13] C. Yang, B.C. Ma, L. Zhang, S. Lin, S. Ghasimi, K. Landfester, K.A. Zhang, X. Wang, Angew. Chem. Int. Ed. 55 (2016) 9202-9206. [14] R.Q. Gao, H. He, J.X. Bai, L. Hao, R.C. Shen, P. Zhang, Y.J. Li, X. Li, Chin. J. Struct. Chem. 41 (2022) 2206031-2206038. [15] C.B. Bie, B. Cheng, W.K. Ho, Y.J. Li, W. Macyk, J.B. Ghasemi, J.G. Yu, Green Chem. 24 (2022) 5739-5754. [16] K.L. He, R.C. Shen, L. Hao, Y.J. Li, P. Zhang, J.Z. Jiang, X. Li, Acta Phys. Chim. Sin. 38 (2022) 2201021. [17] J. Zou, G.D. Liao, J.Z. Jiang, Z.G. Xiong, S.S. Bai, H.T. Wang, P.X. Wu, P. Zhang, X. Li, Chin. J. Struct. Chem. 41 (2022) 2201025. [18] R.C. Shen, K.L. He, A.P. Zhang, N. Li, Y.H. Ng, P. Zhang, J. Hu, X. Li, Appl. Catal. B Environ. 291 (2021) 120104. [19] R.C. Shen, L. Hao, Q. Chen, Q.Q. Zheng, P. Zhang, X. Li, Acta Phys. Chim. Sin. 38 (2022) 2110014. [20] Z.Z. Liang, J.X. Bai, L. Hao, R.C. Shen, P. Zhang, X. Li, Adv. Sustain. Syst. (2022) 2200143, doi: 10.1002/adsu.202200143 [21] X. Lin, S.W. Du, C.H. Li, G.J. Li, Y.J. Li, F.T. Chen, P.F. Fang, Catal. Lett. 150 (2020) 1898-1908. [22] Z.B. Fan, X. Guo, Z.L. Jin, X. Li, Y.J. Li, Langmuir 38 (2022) 3244-3256. [23] K.C. Yang, T.X. Liu, D.Z. Xiang, Y.J. Li, Z.L. Jin, Sep. Purif. Technol. 298 (2022) 15. [24] X.L. Hu, C.Y. Sun, C. Qin, X.L. Wang, H.N. Wang, E.L. Zhou, W.E. Li, Z.M. Su, Chem. Commun. 49 (2013) 3564-3566. [25] S. Lee, S. Oh, M. Oh, Angew. Chem. Int. Ed. 59 (2020) 1327-1333. [26] Z.Z. Liang, R.C. Shen, P. Zhang, Y.J. Li, N. Li, X. Li, Chin. J. Catal. 43 (2022) 2581-2591. [27] Z.Z. Liang, R.C. Shen, Y.H. Ng, Y. Fu, T.Y. Ma, P. Zhang, Y.J. Li, X. Li, Chem. Catal. (2022), doi: 10.1016/j.checat.2022.06.006 [28] L. Wang, W.T. Lian, B. Liu, H.F. Lv, Y. Zhang, X.J. Wu, T. Wang, J.L. Gong, T. Chen, H.X. Xu, Adv. Mater. 34 (2022) 2200723. [29] M.R. Rao, Y. Fang, S. De Feyter, D.F. Perepichka, J. Am. Chem.Soc. 139 (2017) 2421-2427. [30] W.B. Liu, X.K. Li, C.M. Wang, H.H. Pan, W.P. Liu, K. Wang, Q.D. Zeng, R.M. Wang, J.Z. Jiang, J. Am. Chem.Soc. 141 (2019) 17431-17440. [31] H. Zhong, R.J. Sa, H.W. Lv, S.L. Yang, D.Q. Yuan, X.C. Wang, R.H. Wang, Adv. Funct. Mater. 30 (2020) 2002654. [32] H. Wang, C. Qian, J. Liu, Y.F. Zeng, D.D. Wang, W.Q. Zhou, L. Gu, H.W. Wu, G.F. Liu, Y.L. Zhao, J. Am. Chem.Soc. 142 (2020) 4862-4871. [33] Q.Q. Yang, P. Peng, Z.H. Xiang, Chem. Eng. Sci. 162 (2017) 33-40. [34] R.C. Shen, X.Y. Lu, Q.Q. Zheng, Q. Chen, Y.H. Ng, P. Zhang, X. Li, Solar RRL 5 (2021) 2100177. [35] J.X. Bai, R.C. Shen, W.L. Chen, J. Xie, P. Zhang, Z.M. Jiang, X. Li, Chem. Eng. J. 429 (2022) 132587. [36] Y. Liu, W.Q. Zhou, W.L. Teo, K. Wang, L.Y. Zhang, Y.F. Zeng, Y.L. Zhao, Chem 6 (2020) 3172-3202. [37] R.L. Li, N.C. Flanders, A.M. Evans, W. Ji, I. Castano, L.X. Chen, N.C. Gianneschi, W.R. Dichtel, Chem. Sci. 10 (2019) 3796-3801. [38] D.D. Ren, R.C. Shen, Z.M. Jiang, X.Y. Lu, X. Li, Chin. J. Catal. 41 (2020) 31-40. [39] J.X. Bai, W.L. Chen, R.C. Shen, Z.M. Jiang, P. Zhang, W. Liu, X. Li, J. Mater. Sci.Technol. 112 (2022) 85-95. [40] J.X. Bai, R.C. Shen, Z.M. Jiang, P. Zhang, Y.J. Li, X. Li, Chin. J. Catal. 43 (2022) 359-369. [41] D.D. Ren, Z.Z. Liang, Y.H. Ng, P. Zhang, Q.J. Xiang, X. Li, Chem. Eng. J. 390 (2020) 124496. [42] L. Zou, R.J. Sa, H. Zhong, H.W. Lv, X.C. Wang, R.H. Wang, ACS Catal. 12 (2022) 3550-3557. [43] L. Sun, L.L. Li, J. Yang, J.J. Fan, Q.L. Xu, Chin. J. Catal. 43 (2022) 350-358. [44] Y. Wang, Z. Hu, W. Wang, H.C. He, L. Deng, Y. Zhang, J.H. Huang, N. Zhao, G.P. Yu, Y.N. Liu, Chem. Sci. 12 (2021) 16065-16073. [45] J. Thote, H.B. Aiyappa, A. Deshpande, D.D. Diaz, S. Kurungot, R. Banerjee, Chem. Eur. J. 20 (2014) 15961-15965. [46] D.K. Wang, X. Li, L.L. Zheng, L.M. Qin, S. Li, P. Ye, Y. Li, J.P. Zou, Nanoscale 10 (2018) 19509-19516. [47] D.K. Wang, H. Zeng, X. Xiong, M.F. Wu, M.R. Xia, M.L. Xie, J.P. Zou, S.L. Luo, Sci. Bull. 65 (2020) 113-122. [48] R. Wang, W.F. Kong, T. Zhou, C.C. Wang, J. Guo, Chem. Commun. 57 (2021) 331-334. [49] K. Deka, M.P.C.Kalita, Chem. Phys. Lett. 652 (2016) 11-15. [50] L. Hao, J. Ning, B. Luo, B. Wang, Y.B. Zhang, Z.H. Tang, J.H. Yang, A. Thomas, L.J. Zhi, J. Am. Chem.Soc. 137 (2015) 219-225. [51] K.W. Wang, L.M. Yang, X. Wang, L.P. Guo, G. Cheng, C. Zhang, S.B. Jin, B.E. Tan, A. Cooper, Angew. Chem. Int. Ed. 56 (2017) 14149-14153. [52] Z.Z. Ai, G. Zhao, Y.Y. Zhong, Y.L. Shao, B.B. Huang, Y.Z. Wu, X.P. Hao, Appl. Catal. B Environ. 221 (2018) 179-186. [53] J. Zhou, Y.H. Lei, C.H. Ma, W.H. Lv, N. Li, Y. Wang, H. Xu, Z.G. Zou, Chem. Com-mun. 53 (2017) 10536-10539. [54] R.C. Shen, Y.N. Ding, S.B. Li, P. Zhang, Q.J. Xiang, Y.H. Ng, X. Li, Chin. J. Catal. 42 (2021) 25-36. [55] S.I. Naya, T. Kume, R. Akashi, M. Fujishima, H. Tada, J. Am. Chem.Soc. 140 (2018) 1251-1254. [56] S.D. Guan, X.L. Fu, Y. Zhang, Z.J. Peng, Chem. Sci. 9 (2018) 1574-1585. [57] Z.J. Li, X.H. Wang, W.L. Tian, A.L. Meng, L.N. Yang, ACS Sustain. Chem. Eng. 7 (2019) 20190-20201. [58] X.H. Wang, X.H. Wang, J.F. Huang, S.X. Li, A.L. Meng, Z.J. Li, Nat. Commun. 12 (2021) 4112. [59] C. Rosso, G. Filippini, A. Criado, M. Melchionna, P. Fornasiero, M. Prato, ACS Nano 15 (2021) 3621-3630. [60] S. Cao, L. Piao, Angew. Chem. Int. Ed. 59 (2020) 18312-18320. [61] R.C. Shen, L. Zhang, N. Li, Z.Z. Lou, T.Y. Ma, P. Zhang, Y.J. Li, X. Li, ACS Catal. 12 (2022) 9994-10003. [62] Z. Sun, W.Z. Shi, C.L. Pei, C.K. Russell, D.F. Cheng, Z.Q. Sun, J.L. Gong, Appl. Catal. B Environ. 316 (2022) 121642. [63] T.P. Hu, P.F. Li, J.F. Zhang, C.H. Liang, K. Dai, Appl. Surf. Sci. 442 (2018) 20-29. [64] J.Q. Wen, J. Xie, H.D. Zhang, A.P. Zhang, Y.J. Liu, X.B. Chen, X. Li, ACS Appl. Mater. Interfaces 9 (2017) 14031-14042. [65] Y. Hu, X.Q. Hao, Z.W. Cui, J. Zhou, S.Q. Chu, Y. Wang, Z.G. Zou, Appl. Catal. B Environ. 260 (2020) 118131. [66] C. Cheng, B.W. He, J.J. Fan, B. Cheng, S.W. Cao, J.G. Yu, Adv. Mater. 33 (2021) 2100317. [67] X.J. Chen, J. Wang, Y.Q. Chai, Z.J. Zhang, Y.F. Zhu, Adv. Mater. 33 (2021) 2007479. [68] C.Z. Li, J.L. Liu, H. Li, K.F. Wu, J.H. Wang, Q.H. Yang, Nat. Commun. 13 (2022) 2357. [69] F.L. Liu, Y.Y. He, X.P. Liu, Z. Wang, H.L. Liu, X. Zhu, C.C. Hou, Y.X. Weng, Q.F. Zhang, Y. Chen, ACS Catal. 12 (2022) 9494-9502. [70] Q.Y. Pan, M. Abdellah, Y.H. Cao, W. Lin, Y. Liu, J. Meng, Q. Zhou, Q. Zhao, X.M. Yan, Z.L. Li, H. Cui, H.L. Cao, W.T. Fang, D.A. Tanner, M. Abdel-Hafiez, Y. Zhou, T. Pullerits, S.E. Canton, H. Xu, K.B. Zheng, Nat. Commun. 13 (2022) 845. [71] W.C. Wang, X.Q. Bai, Q. Ci, L.L. Du, X.G. Ren, D.L. Phillips, Adv. Funct. Mater. 31 (2021) 2103978. [72] J. Xue, M. Fujitsuka, T. Majima, ACS Appl. Mater. Interfaces 11 (2019) 40860-40867. [73] A.Q. Shi, D.Z. Sun, X.M. Zhang, S.L. Ji, L.L. Wang, X.A. Li, Q. Zhao, X.H. Niu, ACS Catal. 12 (2022) 9570-9578. [74] B. Yang, X. Mao, F. Hong, W.W. Meng, Y.X. Tang, X.S. Xia, S.Q. Yang, W.Q. Deng, K.L. Han, J. Am. Chem.Soc. 140 (2018) 17001-17006. [75] C.M. Wolff, P.D. Frischmann, M. Schulze, B.J. Bohn, R. Wein, P. Livadas, M.T. Carlson, F. Jäckel, J. Feldmann, F. Würthner, J.K. Stolarczyk, Nat. Energy 3 (2018) 862-869. |
[1] | Wenxuan Wang, Wenhao Chi, Zhaoyong Zou, Pengchao Zhang, Kun Wang, Ji Zou, Hang Ping, Jingjing Xie, Weimin Wang, Zhengyi Fu. Bio-inspired high-efficiency photosystem by synergistic effects of core-shell structured Au@CdS nanoparticles and their engineered location on {001} facets of SrTiO3 nanocrystals [J]. J. Mater. Sci. Technol., 2023, 136(0): 159-168. |
[2] | Weijie Zhang, Xizhong Zhou, Jinzhao Huang, Shouwei Zhang, Xijin Xu. Noble metal-free core-shell CdS/iron phthalocyanine Z-scheme photocatalyst for enhancing photocatalytic hydrogen evolution [J]. J. Mater. Sci. Technol., 2022, 115(0): 199-207. |
[3] | Xudong He, Qinqin Liu, Difa Xu, Lele Wang, Hua Tang. Plasmonic TiN nanobelts assisted broad spectrum photocatalytic H2 generation [J]. J. Mater. Sci. Technol., 2022, 116(0): 1-10. |
[4] | Chen Yang, Yukun Zhu, Yiming Liu, Hongwei Wang, Dongjiang Yang. Ternary red phosphorus/CoP2/SiO2 microsphere boosts visible-light-driven photocatalytic hydrogen evolution from pure water splitting [J]. J. Mater. Sci. Technol., 2022, 125(0): 59-66. |
[5] | Junxian Bai, Weilin Chen, Rongchen Shen, Zhimin Jiang, Peng Zhang, Wei Liu, Xin Li. Regulating interfacial morphology and charge-carrier utilization of Ti3C2 modified all-sulfide CdS/ZnIn2S4 S-scheme heterojunctions for effective photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2022, 112(0): 85-95. |
[6] | Huaze Zhu, Yongqiang Yang, Yuyang Kang, Ping Niu, Xiangdong Kang, Zhiqing Yang, Hengqiang Ye, Gang Liu. Strong interface contact between NaYF4:Yb,Er and CdS promoting photocatalytic hydrogen evolution of NaYF4:Yb,Er/CdS composites [J]. J. Mater. Sci. Technol., 2022, 102(0): 1-7. |
[7] | Guojing Wang, Zhiwei Tang, Jing Wang, Shasha Lv, Yunjie Xiang, Feng Li, Chong Liu. Energy band engineering of Bi2O2.33-CdS direct Z-scheme heterojunction for enhanced photocatalytic reduction of CO2 [J]. J. Mater. Sci. Technol., 2022, 111(0): 17-27. |
[8] | Xuewen Wang, Qiuchan Li, Qingzhuo Lin, Rongbin Zhang, Mingyue Ding. CdS-sensitized 3D ordered macroporous g-C3N4 for enhanced visible-light photocatalytic hydrogen generation [J]. J. Mater. Sci. Technol., 2022, 111(0): 204-210. |
[9] | Yuxiao Chen, Wei Zhong, Feng Chen, Ping Wang, Jiajie Fan, Huogen Yu. Photoinduced self-stability mechanism of CdS photocatalyst: The dependence of photocorrosion and H2-evolution performance [J]. J. Mater. Sci. Technol., 2022, 121(0): 19-27. |
[10] | Chao Liu, Yulong Zhang, Jiaxin Wu, Hailu Dai, Chengjian Ma, Qinfang Zhang, Zhigang Zou. Ag-Pd alloy decorated ZnIn2S4 microspheres with optimal Schottky barrier height for boosting visible-light-driven hydrogen evolution [J]. J. Mater. Sci. Technol., 2022, 114(0): 81-89. |
[11] | Tingmin Di, Quanrong Deng, Geming Wang, Shenggao Wang, Linxi Wang, Yuhua Ma. Photodeposition of CoOx and MoS2 on CdS as dual cocatalysts for photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2022, 124(0): 209-216. |
[12] | Lei Cheng, Baihai Li, Hui Yin, Jiajie Fan, Quanjun Xiang. Cu clusters immobilized on Cd-defective cadmium sulfide nano-rods towards photocatalytic CO2 reduction [J]. J. Mater. Sci. Technol., 2022, 118(0): 54-63. |
[13] | Zheng Zhang, Yuyang Kang, Li-Chang Yin, Ping Niu, Chao Zhen, Runze Chen, Xiangdong Kang, Fayu Wu, Gang Liu. Constructing CdSe QDs modified porous g-C3N4 heterostructures for visible light photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2021, 95(0): 167-171. |
[14] | Shumin Zhang, Hu Dong, Changsheng An, Zhongfu Li, Difa Xu, Kaiqiang Xu, Zhaohui Wu, Jie Shen, Xiaohua Chen, Shiying Zhang. One-pot synthesis of array-like sulfur-doped carbon nitride with covalently crosslinked ultrathin MoS2 cocatalyst for drastically enhanced photocatalytic hydrogen evolution [J]. J. Mater. Sci. Technol., 2021, 75(0): 59-67. |
[15] | Jie Zhang, Gehong Zhang, Jing Zhang. A hybrid artificial photosynthesis system with molecular catalysts covalently linked onto TiO2 as electron relay for efficient photocatalytic hydrogen evolution [J]. J. Mater. Sci. Technol., 2020, 50(0): 147-152. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||