J. Mater. Sci. Technol. ›› 2023, Vol. 138: 70-79.DOI: 10.1016/j.jmst.2022.07.059
Previous Articles Next Articles
Ji-Chang Rena, Junjun Zhoua, Christopher J. Butchb,*, Zhigang Dinga, Shuang Lia, Yonghao Zhaoa, Wei Liua,*
Received:
2022-06-14
Revised:
2022-07-24
Accepted:
2022-07-31
Published:
2023-03-01
Online:
2023-03-03
Contact:
* E-mail addresses:. chrisbutch@gmail.com (C.J. Butch), weiliu@njust.edu.cn (W. Liu)
Ji-Chang Ren, Junjun Zhou, Christopher J. Butch, Zhigang Ding, Shuang Li, Yonghao Zhao, Wei Liu. Predicting single-phase solid solutions in as-sputtered high entropy alloys: High-throughput screening with machine-learning model[J]. J. Mater. Sci. Technol., 2023, 138: 70-79.
[1] B. Cantor, I.T.H.Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377 (2004) 213-218. [2] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303. El-Atwani, N. Li, M. Li, A. Devaraj, J.K.S. Baldwin, M.M. Schneider, D. So-bieraj, J.S. Wróbel, D. Nguyen-Manh, S.A. Maloy, E. Martinez, Sci. Adv. 5 (2019) eaav2002. [3] W.Y. Ching, S. San, J. Brechtl, R. Sakidja, M. Zhang, P.K. Liaw, NPJ Comput. Mater. 6 (2020) 45. [4] T. Hori, T. Nagase, M. Todai, A. Matsugaki, T. Nakano, Scr. Mater. 172 (2019) 83-87. [5] C. Chen, H. Zhang, Y. Fan, W. Zhang, R. Wei, T. Wang, T. Zhang, F. Li, J. Magn. Magn.Mater. 502 (2020) 166513. [6] S. Ranganathan, Curr. Sci. 85 (2003) 1404-1406. [7] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158. [8] A.J. Zaddach, R.O. Scattergood, C.C. Koch, Mater. Sci. Eng. A 636 (2015) 373-378. [9] L. Liu, J.B. Zhu, C. Zhang, J.C. Li, Q. Jiang, Mater. Sci. Eng. A 548 (2012) 64-68. [10] Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Acta Mater. 124 (2017) 143-150. [11] X. Gao, Y. Lu, B. Zhang, N. Liang, G. Wu, G. Sha, J. Liu, Y. Zhao, Acta Mater. 141 (2017) 59-66. [12] Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R.O. Ritchie, Q. Yu, Nature 574 (2019) 223-227. [13] S.W. Wu, G. Wang, Q. Wang, Y.D. Jia, J. Yi, Q.J. Zhai, J.B. Liu, B.A. Sun, H.J. Chu, J. Shen, P.K. Liaw, C.T. Liu, T.Y. Zhang, Acta Mater. 165 (2019) 4 4 4-458. [14] Z. Zhang, M.M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S.X. Mao, E.P. George, Q. Yu, R.O. Ritchie, Nat. Commun. 6 (2015) 10143. [15] H. Zhang, Y. He, Y. Pan, Scr. Mater. 69 (2013) 342-345. [16] B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Acta Mater. 96 (2015) 258-268. [17] Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Intermetallics 19 (2011) 698-706. [18] D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448-511. [19] S. Guo, Q. Hu, C. Ng, C.T. Liu, Intermetallics 41 (2013) 96-103. [20] J.W. Yeh, JOM 65 (2013) 1759-1771. [21] Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Mater. Today 19 (2016) 349-362. [22] S. Guo, Mater. Sci. Technol. 31 (2015) 1223-1230. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang, JOM 66 (2014) 1984-1992. [23] B.S. Murty, J.W. Yeh, S. Ranganathan, P.P. Bhattacharjee, Elsevier Science, 2019. [24] S. Guo, C.T. Liu, Prog. Nat. Sci. Mater. Int. 21 (2011) 433-446. [25] S. Fang, X. Xiao, L. Xia, W. Li, Y. Dong, J. Non-Cryst. Solids 321 (2003) 120-125. [26] S. Guo, C. Ng, J. Lu, C.T. Liu, J. Appl. Phys. 109 (2011) 103505. [27] X. Yang, Y. Zhang, Mater. Chem. Phys. 132 (2012) 233-238. [28] Y. Zhang, Z.P. Lu, S.G. Ma, P.K. Liaw, Z. Tang, Y.Q. Cheng, M.C. Gao, MRS Com-mun. 4 (2014) 57-62. [29] Z. Wang, Y. Huang, Y. Yang, J. Wang, C.T. Liu, Scr. Mater. 94 (2015) 28-31. [30] H. Oh, D. Ma, G. Leyson, B. Grabowski, E. Park, F. Körmann, D. Raabe, Entropy 18 (2016) 321. [31] Y. Wang, M. Yan, Q. Zhu, W.Y. Wang, Y. Wu, X. Hui, R. Otis, S.L. Shang, Z.K. Liu, L.Q. Chen, Acta Mater. 143 (2018) 88-101. [34] D. Ma, B. Grabowski, F. Körmann, J. Neugebauer, D. Raabe, Acta Mater. 100 (2015) 90-97. [35] N. Islam, W. Huang, H.L. Zhuang, Comput. Mater. Sci. 150 (2018) 230-235. [36] C. Wen, Y. Zhang, C. Wang, D. Xue, Y. Bai, S. Antonov, L. Dai, T. Lookman, Y. Su, Acta Mater. 170 (2019) 109-117. [37] W. Huang, P. Martin, H.L. Zhuang, Acta Mater. 169 (2019) 225-236. [38] Y. Li, W. Guo, Phys. Rev. Mater. 3 (2019) 095005. [39] Z. Zhou, Y. Zhou, Q. He, Z. Ding, F. Li, Y. Yang, npj Comput.Mater. 5 (2019) 128. [40] K. Kaufmann, D. Maryanovsky, W.M. Mellor, C. Zhu, A.S. Rosengarten, T.J.Har-rington, C.Oses, C. Toher, S. Curtarolo, K.S. Vecchio, NPJ Comput. Mater. 6 (2020) 42. [41] S. Feng, H. Fu, H. Zhou, Y. Wu, Z. Lu, H. Dong, npj Comput.Mater. 7 (2021) 10. [42] Y. Sun, Z. Lu, X. Liu, Q. Du, H. Xie, J. Lv, R. Song, Y. Wu, H. Wang, S. Jiang, Z. Lu, Appl. Phys. Lett. 119 (2021) 201905. [43] A.R. Barron, Mach. Learn. 14 (1994) 115-133. [44] O.N. Senkov, D.B. Miracle, K.J. Chaput, J.P. Couzinie, J. Mater. Res. 33 (2018) 3092-3128. [45] J.H. Li, M.H. Tsai, Scr. Mater. 188 (2020) 80-87. [46] S.A. Kube, S. Sohn, D. Uhl, A. Datye, A. Mehta, J. Schroers, Acta Mater. 166 (2019) 677-686. [47] J.R. Quinlan, Mach. Learn. 1 (1986) 81-106. [48] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, FL, 1984. [49] M. Robnik-Šikonja, Improving random forests, Springer Berlin Heidelberg, 2004. [50] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Mach. Learn.Res. 12 (2011) 2825-2830. [51] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169-11186. [52] A. Zunger, S.H. Wei, L.G. Ferreira, J.E. Bernard, Phys. Rev. Lett. 65 (1990) 353-356. [53] A. van de Walle, M. Asta, G. Ceder, Calphad 26 (2002) 539-553. [54] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868. [55] L. Breiman, Out-of-bag Estimation, https://www.stat.berkeley.edu/~breiman/OOBestimation.pdf. (10 August 2016), 1996b. [56] K.A.Spackman, in: Proceedings of the sixth International Workshop on Ma-chine Learning, 1989, pp. 160-163. [57] D.J. Hand, P. Smyth, H. Mannila, Principles of Data Mining, MIT Press, 2001. [58] J. Friedman, Ann. Stat. 29 (2001) 1189-1232. [59] R. Short, K. Fukunaga, IEEE Trans. Inf. Theory 27 (1981) 622-627. [60] M.A. Hearst, S.T. Dumais, E. Osuna, J. Platt, B. Scholkopf, IEEE Intell. Syst. App. 13 (1998) 18-28. [61] Y. Freund, R.E. Schapire, Springer, 1995. [62] W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Intermetallics 26 (2012) 44-51. [63] N. Li, C.L. Jia, Z.W. Wang, L.H. Wu, D.R. Ni, Z.K. Li, H.M. Fu, P. Xue, B.L. Xiao, Z.Y. Ma, Y. Shao, Y.L. Chang, Acta Metall. Sin. (Engl. Lett.) 33 (2020) 947-956. [64] Y.P. Wang, B.S. Li, H.Z. Fu, Adv. Eng. Mater. 11 (2009) 641-644. [65] S.H. Welling, H.H.F. Refsgaard, P.B. Brockhoff, L.H. Clemmensen, arXiv[Internet] (2016). Available from: http://arxiv.org/abs/1605.09196. [66] H.P. Chou, Y.S. Chang, S.K. Chen, J.W. Yeh, Mater. Sci. Eng. B 163 (2009) 184-189. [67] C. Wang, X. Li, Z. Li, Q. Wang, Y. Zheng, Y. Ma, L. Bi, Y. Zhang, X. Yuan, X. Zhang, C. Dong, P.K. Liaw, Thin Solid Films 700 (2020) 137895. [68] N.A. Khan, B. Akhavan, H. Zhou, L. Chang, Y. Wang, L. Sun, M.M. Bilek, Z. Liu, Appl. Surf. Sci. 495 (2019) 143560. [69] S. Fang, C. Wang, C.-L. Li, J.H. Luan, Z.B. Jiao, C.T. Liu, C.H. Hsueh, J. Alloys Compd. 820 (2020) 153388. [70] Y. Ma, Y.H. Feng, T.T. Debela, G.J. Peng, T.H. Zhang, Int. J. Refract. Met. Hard Mater. 54 (2016) 395-400. |
[1] | Yimian Chen, Shuize Wang, Jie Xiong, Guilin Wu, Junheng Gao, Yuan Wu, Guoqiang Ma, Hong-Hui Wu, Xinping Mao. Identifying facile material descriptors for Charpy impact toughness in low-alloy steel via machine learning [J]. J. Mater. Sci. Technol., 2023, 132(0): 213-222. |
[2] | Shengzhe Wang, Lei Ma, Rui Wang, Chengyu Jin, Ying Zhao, Xuefei Tan, Yanan Zhang, Mengyang Liu, Chenxing Yao, Huangzhao Wei, Chenglin Sun. Fe3C@C/C for catalytic ozonation of silicon-containing wastewater: Dual improvement of silicon resistance and catalytic effect [J]. J. Mater. Sci. Technol., 2023, 136(0): 65-77. |
[3] | Hongru Zhou, Jun Ke, Desheng Xu, Jie Liu. MnWO4 nanorods embedded into amorphous MoSx microsheets in 2D/1D MoSx/MnWO4 S-scheme heterojunction for visible-light photocatalytic water oxidation [J]. J. Mater. Sci. Technol., 2023, 136(0): 169-179. |
[4] | Xingpu Zhang, Zhongkang Han, Liangliang Xu, Haohan Ni, Xiaojuan Hu, Haofei Zhou, Yu Zou, Jiangwei Wang. Evolution of precipitate and precipitate/matrix interface in Al-Zn-Mg-Cu (-Ag) alloys [J]. J. Mater. Sci. Technol., 2023, 138(0): 157-170. |
[5] | H.T. Jeong, W.J. Kim. Effect of roll speed ratio on the texture and microstructural evolution of an FCC high-entropy alloy during differential speed rolling [J]. J. Mater. Sci. Technol., 2022, 111(0): 152-166. |
[6] | Yu Yin, Qiyang Tan, Qiang Sun, Wangrui Ren, Jingqi Zhang, Shiyang Liu, Yingang Liu, Michael Bermingham, Houwen Chen, Ming-Xing Zhang. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 113-125. |
[7] | Defang Tu, Jianqi Yan, Yunbo Xie, Jun Li, Shuo Feng, Mingxu Xia, Jianguo Li, Alex Po Leung. Accelerated design for magnetocaloric performance in Mn-Fe-P-Si compounds using machine learning [J]. J. Mater. Sci. Technol., 2022, 96(0): 241-247. |
[8] | Jia Li, Baobin Xie, Quanfeng He, Bin Liu, Xin Zeng, Peter K. Liaw, Qihong Fang, Yong Yang, Yong Liu. Chemical-element-distribution-mediated deformation partitioning and its control mechanical behavior in high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 120(0): 99-107. |
[9] | Shaohan Li, Weiwei Sun, Yi Luo, Jin Yu, Litao Sun, Bao-Tian Wang, Ji-Xuan Liu, Guo-Jun Zhang, Igor Di Marco. Pushing the limit of thermal conductivity of MAX borides and MABs [J]. J. Mater. Sci. Technol., 2022, 97(0): 79-88. |
[10] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
[11] | Chuangwei Liu, Tianyi Wang, Derek Hao, Qinye Li, Song Li, Chenghua Sun. Catalytic reduction of carbon dioxide over two-dimensional boron monolayer [J]. J. Mater. Sci. Technol., 2022, 110(0): 96-102. |
[12] | Wang Yi, Guangchen Liu, Zhao Lu, Jianbao Gao, Lijun Zhang. Efficient alloy design of Sr-modified A356 alloys driven by computational thermodynamics and machine learning [J]. J. Mater. Sci. Technol., 2022, 112(0): 277-290. |
[13] | Chunwei Dong, Hongyu Zhou, Hui Liu, Bo Jin, Zi Wen, Xingyou Lang, Jianchen Li, Jaekwang Kim, Qing Jiang. Inhibited shuttle effect by functional separator for room-temperature sodium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 113(0): 207-216. |
[14] | Yupeng Diao, Luchun Yan, Kewei Gao. A strategy assisted machine learning to process multi-objective optimization for improving mechanical properties of carbon steels [J]. J. Mater. Sci. Technol., 2022, 109(0): 86-93. |
[15] | Xingpu Zhang, Xiaotong Deng, Haofei Zhou, Jiangwei Wang. Atomic-scale study on the precipitation behavior of an Al-Zn-Mg-Cu alloy during isochronal aging [J]. J. Mater. Sci. Technol., 2022, 108(0): 281-292. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||