J. Mater. Sci. Technol. ›› 2023, Vol. 133: 123-134.DOI: 10.1016/j.jmst.2022.06.002
• Research article • Previous Articles Next Articles
Kang Wua,1, Qiang Yangb,c, Lin Zhanga, Pengcheng Xua, Xiexing Wua, Huilin Yanga, Huan Zhoub,*(), Xiao Lina,*(
), Lei Yanga,b,*(
)
Received:
2022-02-10
Revised:
2022-05-25
Accepted:
2022-06-05
Published:
2022-06-17
Online:
2022-06-17
Contact:
Huan Zhou,Xiao Lin,Lei Yang
About author:
ylei@hebut.edu.cn (L. Yang).Kang Wu, Qiang Yang, Lin Zhang, Pengcheng Xu, Xiexing Wu, Huilin Yang, Huan Zhou, Xiao Lin, Lei Yang. An injectable curcumin-releasing organohydrogel with non-drying property and high mechanical stability at low-temperature for expedited skin wound care[J]. J. Mater. Sci. Technol., 2023, 133: 123-134.
Fig. 1. Schematic illustration of the preparation and property of the Cur-IOH, and its application in accelerating wound healing as a novel wound dressing material.
Fig. 2. Preparation and materials characterization of IOH. (a) Schematic diagram of the preparation of IOH. (b) Water vapor transmission rate (WVTR) of various materials. Data = mean ± standard deviation (n = 3). **p < 0.01. (c) Dependence of G′, G′′, and the G′′/G′ ratio (loss factor) of IOH on the frequency of oscillation. (d) Stress-strain curves of cyclic compressive loading-unloading tests on IOH. (e) Dependence of the viscosity of IOH in a shear rate range of 0.1-100 at 37 °C. (f) Dynamic glide force of IOH during the injection. (g) Self-healing property of IOH characterized by rheometer at the alternate step strain switched from 1% to 100%, frequency of 1 Hz and at 37 °C.
Fig. 3. Non-drying capability of IOH and its stability at different temperatures. (a) Photographs of the IOH, GelMA, and PVA hydrogels before (left) and after (right) storage at 37 °C and 50% RH for 7 days. (b) Weight change ratios of IOH, PVA hydrogel, and GelMA when stored at 37 °C and 50% RH. (c, d) Compressive modulus of IOH, PVA hydrogel, and GelMA after storage at 37 °C and 50% RH for 7 days or at -20°C for 1 day. (e, f) Compressive stress-strain curve at the maximum strain of 20% of IOH after storage at 37 °C and 50% RH for 7 days and at -20°C for 24 h.
Fig. 4. In vitro inhibitory effect of IOH on bacterial adhesion and growth. (a) Representative fluorescence microscopic images of live bacteria (S. aureus and E. coli) adhered to the surface of IOH, GelMA, and PVA hydrogel after 24 h incubation. The area coverages of (b) S. aureus and (c) E. coli on the surfaces of IOH, GelMA, and PVA hydrogel after 24 h incubation. **p < 0.01.
Fig. 5. In vitro antibacterial activity and cytocompatibility of different hydrogels. (a) Cumulative release curve of Cur-IOH (fitted with Ritger-Peppas model) and Cur-PVA. (b, c) Relative growth rate of HUVECs and NIH/3T3 fibroblasts when cultured with extracts of IOH, Cur-IOH, and PVA hydrogel for 1 and 3?days, versus a control group at day 1 or day 3 (set as 100%). *p < 0.05, **p < 0.01. Data = mean ± standard deviation (n = 3). (d) Live/dead fluorescence micrographs of HUVECs and NIH/3T3 fibroblasts after being cultured with a regular medium and the extracts of IOH, Cur-IOH, and PVA hydrogel for 1 and 3?days, respectively. (e, f) Representative images of inhibition zones around different samples against S. aureus and E. coli. (g, h) Width of inhibition zones around different samples against S. aureus and E. coli. **p < 0.01.
Fig. 6. Healing of murine full-thickness skin wound with the IOH and Cur-IOH. (a) Schematic illustration of experimental design. (b) Representative images of the non-treated skin wounds and the wounds treated with IOH and Cur-IOH for 5, 10, and 15 days. (c) Wound contraction ratios of different groups. *p < 0.05, **p < 0.01. (d) Representative images of H&E, Masson, and CD31 immunohistochemical staining of the non-treated wound and the wound tissues treated with IOH and Cur-IOH at 15 days post-surgery. (e) Epidermal thickness, (f) collagen deposition, (g) percentage of vessel area, and (h) vessel density at wound site after different treatments for 15 days. *p < 0.05, **p < 0.01.
[1] | C.K. Sen, G.M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T.K. Hunt, F. Gottrup, G. C. Gurtner, M.T. Longaker, Wound Repair Regen. 17 (2009) 763-771. |
[2] |
J. Qin, J.N. Guo, Q.M. Xu, Z.Q. Zheng, H.L. Mao, F. Yan, ACS Appl. Mater. Inter- faces 9 (2017) 10504-10511.
DOI URL |
[3] | H. Zhang, X.Y. Sun, J. Wang, Y.L. Zhang, M.N. Dong, T. Bu, L.H. Li, Y.N. Liu, L. Wang, Adv. Funct. Mater. 31 (2021) 210 0 093. |
[4] |
Y.X. Mao, M.M. Pan, H.L. Yang, X. Lin, L. Yang, Front. Mater. Sci. 14 (2020) 232-241.
DOI URL |
[5] | Y.P. Liang, J.H. He, B.L. Guo, ACS Nano 15 (2021) 12687-12722. |
[6] |
Y.X. Mao, P. Li, J.W. Yin, Y.J. Bai, H. Zhou, X. Lin, H.L. Yang, L. Yang, J. Mater. Sci. Technol. 63 (2021) 228-235.
DOI URL |
[7] |
X. Lin, Y.X. Mao, P. Li, Y.J. Bai, T. Chen, K. Wu, D.D. Chen, H.L. Yang, L. Yang, Adv. Sci. 8 (2021) 2004627.
DOI URL |
[8] | J.W. Yin, P.C. Xu, K. Wu, H. Zhou, X. Lin, L.L. Tan, H.L. Yang, K. Yang, L. Yang, Acta Metall. Sin.-Engl. Lett. 35 (2021) 853-866. |
[9] |
H.Q. Zhang, Z.J. Liu, J.P. Mai, N. Wang, H.J. Liu, J. Zhong, X.M. Mai, Adv. Sci. 8 (2021) 2100320.
DOI URL |
[10] |
X.Y. Sun, P. Jia, H. Zhang, M.N. Dong, J. Wang, L.H. Li, T. Bu, X. Wang, L. Wang, Q.Y. Lu, J.H. Wang, Adv. Funct. Mater. 32 (2021) 2106572.
DOI URL |
[11] |
Y.R. Gao, Y.N. Hao, W.X. Zhang, Y.N. Wei, Y. Shu, J.H. Wang, Chem. Eng. J. 429 (2022) 131590.
DOI URL |
[12] |
X. Lin, Y.J. Bai, H. Zhou, L. Yang, J. Mater. Sci. Technol. 59 (2020) 227-233.
DOI URL |
[13] | M.M. Mahmud, S. Zaman, A. Perveen, R.A. Jahan, M.F. Islam, M.T. Arafat, J. Drug Deliv. Sci. Technol. 55 (2020) 101386. |
[14] | Y. Hussein, S.A. Loutfy, E.A. Kamoun, S.H. El-Moslamy, E.M. Radwan, S.E.I. El- behairi, Int. J. Biol. Macromol. 170 (2021) 107-122. |
[15] |
D. Akbik, M. Ghadiri, W. Chrzanowski, R. Rohanizadeh, Life Sci. 116 (2014) 1-7.
DOI URL |
[16] | D. Gopinath, M.R. Ahmed, K. Gomathi, K. Chitra, P.K. Sehgal, R. Jayakumar, Bio- materials 25 (2004) 1911-1917. |
[17] |
R.L. Thangapazham, A. Sharma, R.K. Maheshwari, Adv. Exp. Med. Biol. 595 (2007) 343-357.
PMID |
[18] | H. Mani, G.S. Sidhu, R. Kumari, J.P. Gaddipati, P. Seth, R.K. Maheshwari, Biofac- tors 16 (2002) 29-43. |
[19] | C.P. Shah, B. Mishra, M. Kumar, K.I. Priyadarsini, P.N. Bajaj, Curr. Sci. 95 (2008) 1426-1432. |
[20] |
X.C. Liu, L.J. You, S. Tarafder, L. Zou, Z.X. Fang, J.D. Chen, C.H. Lee, Q.Q. Zhang, Chem. Eng. J. 359 (2019) 1111-1119.
DOI URL |
[21] |
Z.X. Wu, X. Yang, J. Wu, ACS Appl. Mater. Interfaces 13 (2021) 2128-2144.
DOI URL |
[22] |
I.S. Yoon, J.H. Park, H.J. Kang, J.H. Choe, M.S. Goh, D.D. Kim, H.J. Cho, Int. J. Pharm. 488 (2015) 70-77.
DOI URL |
[23] | F. Cilurzo, F. Selmin, P. Minghetti, M. Adami, E. Bertoni, S. Lauria, L. Montanari, AAPS PharmSciTech 12 (2011) 604-609. |
[24] |
F. Chen, D. Zhou, J. Wang, T. Li, X. Zhou, T. Gan, S. Handschuh-Wang, X. Zhou, Angew. Chem. Int. Ed. 57 (2018) 6568-6571.
DOI PMID |
[25] |
S.J. Wu, H. Yuk, J.J. Wu, C.S. Nabzdyk, X.H. Zhao, Adv. Mater. 33 (2021) 2007667.
DOI URL |
[26] | E.L. Zhang, X.T. Zhao, J.L. Hu, R.X. Wang, S. Fu, G.W. Qin, Bioact. Mater. 6 (2021) 2569-2612. |
[27] | L. Zhang, J. Zhao, J.T. Zhu, C.C. He, H.L. Wang, Soft Matter 8 (2012) 10439-10447. |
[28] | S.J. Shi, X. Peng, T.Q. Liu, Y.N. Chen, C.C. He, H.L. Wang, Polymer 111 (2017) 168-176. |
[29] | T.Q. Liu, X. Peng, Y.N. Chen, Q.W. Bai, C. Shang, L. Zhang, H.L. Wang, Macromol. Rapid Commun. 39 (2018) 180 0 050. |
[30] |
M.A. Bertuzzi, E.F.C. Vidaurre, M. Armada, J.C. Gottifredi, J. Food Eng. 80 (2007) 972-978.
DOI URL |
[31] |
Q.Q. Yan, H.X. Hou, P. Guo, H.Z. Dong, Carbohyd. Polym. 87 (2012) 707-712.
DOI URL |
[32] | G.D. Winter, Nature 193 (1962) 293-294. |
[33] | L.O. Lamke, G.E. Nilsson, H.L. Reithner, Burns 3 (1977) 159-165. |
[34] |
S. Pan, D. Malhotra, N. Germann, J. Mech. Behav. Biomed. 96 (2019) 310-323.
DOI URL |
[35] | J. Kestin, M. Sokolov, W.A. Wakeham, J. Phys. Chem. Ref. Data 7 (1978) 941-948. |
[36] |
S. Park, B.G. Shin, S. Jang, K. Chung, ACS Appl. Mater. Interfaces 12 (2020) 3953-3960.
DOI URL |
[37] | K.H. Vining, D.J. Mooney, Nat. Rev. Mol. Cell. Biol. 18 (2017) 728-742. |
[38] | I. Pastar, A.G. Nusbaum, J. Gil, S.B. Patel, J. Chen, J. Valdes, O. Stojadinovic, L. R. Plano, M. Tomic-Canic, S.C. Davis, PLoS One 8 (2013) e56846. |
[39] | L. Kalan, M. Loesche, B.P. Hodkinson, K. Heilmann, G. Ruthel, S.E. Gardner, E.A. Grice, mBio 7 (2016) e01016-e01058. |
[40] | S. Janny, F. Bert, F. Dondero, M.H. Chanoine, J. Belghiti, J. Mantz, C. Paugam-Burtz, Transpl. Infect. Dis. 15 (2013) E49-E53. |
[41] |
Y.J. Shi, I. Minami, M. Grahn, M. Bjorling, R. Larsson, Tribol. Int. 69 (2014) 39-45.
DOI URL |
[42] | Y. Han, W.W. Zhao, Y.W. Zheng, H.M. Wang, Y.L. Sun, Y.F. Zhang, J. Luo, H.Y. Zhang, Bioact. Mater. 6 (2021) 2535-2545. |
[43] | P. Mazurek, N.S. Frederiksen, H. Silau, N.A. Yuusuf, H. Mordhorst, S.J. Pamp, A. L. Skov, Adv. Mater. Interfaces 8 (2021) 2001873. |
[44] | B.K. Sun, Z. Siprashvili, P.A. Khavari, Science 346 (2014) 941-945. |
[45] |
D.C. Sevin, U. Sauer, Nat. Chem. Biol. 10 (2014) 266-272.
DOI URL |
[46] |
M. Piuri, C. Sanchez-Rivas, S.M. Ruzal, J. Appl. Microbiol. 98 (2005) 84-95.
PMID |
[47] | S. Xue, Y. Wu, M. Guo, Y. Xia, D. Liu, H. Zhou, W. Lei, Soft Matter 15 (2019) 36 80-36 88. |
[48] |
J. Wu, Z. Wu, S. Han, B.R. Yang, X. Gui, K. Tao, C. Liu, J. Miao, L.K. Norford, ACS Appl. Mater. Interfaces 11 (2019) 2364-2373.
DOI URL |
[49] |
L.B. Lane, Ind. Eng. Chem. 17 (1925) 924.
DOI URL |
[50] | L. Vollono, M. Falconi, R. Gaziano, F. Iacovelli, E. Dika, C. Terracciano, L. Bianchi, E. Campione, Nutrients 11 (2019) 2169. |
[1] | J.R. Li, D.S. Xie, Z.R. Zeng, B. Song, H.B. Xie, R.S. Pei, H.C. Pan, Y.P. Ren, G.W. Qin. Mechanistic investigation on Ce addition in tuning recrystallization behavior and mechanical property of Mg alloy [J]. J. Mater. Sci. Technol., 2023, 132(0): 1-17. |
[2] | Ziling Cheng, Guojun Chang, Bai Xue, Lan Xie, Qiang Zheng. Hierarchical Ni-plated melamine sponge and MXene film synergistically supported phase change materials towards integrated shape stability, thermal management and electromagnetic interference shielding [J]. J. Mater. Sci. Technol., 2023, 132(0): 132-143. |
[3] | Peng Wang, Changyang Li, Dun Zhang. Recent advances in chemical durability and mechanical stability of superhydrophobic materials: Multi-strategy design and strengthening [J]. J. Mater. Sci. Technol., 2022, 129(0): 40-69. |
[4] | Ting Zhang, Daixiu Wei, Eryi Lu, Wen Wang, Kuaishe Wang, Xiaoqing Li, Lai-Chang Zhang, Hidemi Kato, Weijie Lu, Liqiang Wang. Microstructure evolution and deformation mechanism of α+β dual-phase Ti-xNb-yTa-2Zr alloys with high performance [J]. J. Mater. Sci. Technol., 2022, 131(0): 68-81. |
[5] | Shuang Liu, Enhui Wang, Shichun Liu, Chunyu Guo, Hailong Wang, Tao Yang, Xinmei Hou. Mild fabrication of SiC/C nanosheets with prolonged cycling stability as supercapacitor [J]. J. Mater. Sci. Technol., 2022, 110(0): 178-186. |
[6] | Qiong Lu, Yaozha Lv, Chi Zhang, Hongbo Zhang, Wei Chen, Zhanyuan Xu, Peizhong Feng, Jinglian Fan. Highly oxidation-resistant Ti-Mo alloy with two-scale network Ti5Si3 reinforcement [J]. J. Mater. Sci. Technol., 2022, 110(0): 24-34. |
[7] | Zu Guannan, Xu Shiyu, Wang Changhao, Li Hongyi, Zhang Manchen, Ke Xiaoxing, Hu Yuxiang, Wang Ruzhi, Wang Jinshu. Unraveling structure evolution failure mechanism in MoS2 anode for improving lithium storage stability [J]. J. Mater. Sci. Technol., 2022, 128(0): 245-253. |
[8] | Wu Qingfeng, Wang Zhijun, He Feng, Yang Zhongsheng, Li Junjie, Wang Jincheng. Endless recrystallization of high-entropy alloys at high temperature [J]. J. Mater. Sci. Technol., 2022, 128(0): 71-81. |
[9] | Timothy Alexander Listyawan, Maya Putri Agustianingrum, Young Sang Na, Ka Ram Lim, Nokeun Park. Improving high-temperature oxidation behavior by modifying Al and Co content in Al-Co-Cr-Fe-Ni high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 129(0): 115-126. |
[10] | DongHwi Kim, Jee-Hyun Kang, Hojun Gwon, JooHyun Ryu, Sung-Joon Kim. Counter-balancing effects of Si on C partitioning and stacking fault energy of austenite in 10Mn quenching and partitioning steel [J]. J. Mater. Sci. Technol., 2022, 98(0): 248-257. |
[11] | Yaqin Qi, Ting Jin, Kai Yuan, Jingyuan You, Chao Shen, Keyu Xie. Chemically stable polypyrrole-modified liquid metal nanoparticles with the promising photothermal conversion capability [J]. J. Mater. Sci. Technol., 2022, 127(0): 144-152. |
[12] | Yuqing He, Shaojie Song, Jinglian Du, Haoran Peng, Zhigang Ding, Huaiyu Hou, Linke Huang, Yongchang Liu, Feng Liu. Thermo-kinetic connectivity by integrating thermo-kinetic correlation and generalized stability [J]. J. Mater. Sci. Technol., 2022, 127(0): 225-235. |
[13] | Kunpeng Qian, Shuang Li, Jianhui Fang, Yuhuan Yang, Shaomei Cao, Miao Miao, Xin Feng. C60 intercalating Ti3C2Tx MXenes assisted by γ-cyclodextrin for electromagnetic interference shielding films with high stability [J]. J. Mater. Sci. Technol., 2022, 127(0): 71-77. |
[14] | Diyan Yang, Jihui Han, Jie Yin, Haoyue Xue, Jiagang Wu. Tailoring depolarization temperature by phase transition causing properties evolution in Bi0.5(Na1-xKx)0.5TiO3 ceramics [J]. J. Mater. Sci. Technol., 2022, 114(0): 111-119. |
[15] | Haolin Zhu, Ling Liu, Huimin Xiang, Fu-Zhi Dai, Xiaohui Wang, Zhuang Ma, Yanbo Liu, Yanchun Zhou. Improved thermal stability and infrared emissivity of high-entropy REMgAl11O19 and LaMAl11O19 (RE=La, Nd, Gd, Sm, Pr, Dy; M=Mg, Fe, Co, Ni, Zn) [J]. J. Mater. Sci. Technol., 2022, 104(0): 131-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||