J. Mater. Sci. Technol. ›› 2023, Vol. 132: 201-212.DOI: 10.1016/j.jmst.2022.06.012
• Research Article • Previous Articles Next Articles
D.D. Zhang, J. Kuang, H. Xue, J.Y. Zhang(
), G. Liu(
), J. Sun(
)
Received:2022-04-28
Revised:2022-05-23
Accepted:2022-06-05
Published:2023-01-01
Online:2022-07-05
Contact:
J.Y. Zhang,G. Liu,J. Sun
About author:junsun@xjtu.edu.cn (J. Sun).D.D. Zhang, J. Kuang, H. Xue, J.Y. Zhang, G. Liu, J. Sun. A strong and ductile NiCoCr-based medium-entropy alloy strengthened by coherent nanoparticles with superb thermal-stability[J]. J. Mater. Sci. Technol., 2023, 132: 201-212.
Fig. 1. Microstructural features of the Al6Ta2 MEA in recrystallized and aged state. (a) SEM and (b) EBSD images of the recrystallized Al6Ta2 MEA, showing the equiaxed grains decorated by profuse ATs indicated by white arrows; (c) XRD patterns of the recrystallized and aged MEA at 750 °C for 64 h, confirming the single-phase FCC microstructure and the appearance of σ-phase in the 750/64 sample; (d-g) microstructures of the aged Al6Ta2 MEA under 750 °C for 1 to 64 h, showing the σ-phase indicated by wathet arrows precipitated along GBs gradually; (h) SEM-EDS scan line profile across σ-phase reveals that σ-phase is Cr-riched.
| Ni | Co | Cr | Al | Ta | |
|---|---|---|---|---|---|
| FCC | 26.2 ± 1.5 | 37.5 ± 1.4 | 33.3 ± 1.1 | 2.4 ± 0.4 | 0.7 ± 0.2 |
| L12 | 43.6 ± 0.4 | 26.4 ± 0.1 | 17.2 ± 0.6 | 7.6 ± 0.4 | 5.2 ± 0.2 |
| σ | 8.9 ± 0.1 | 33.6 ± 0.1 | 57.1 ± 0.1 | 0.2 ± 0.1 | 0.3 ± 0.1 |
Table 1. Chemical compositions (at.%) of the FCC matrix, L12, and σ phase in the aged Al6Ta2 MEA.
| Ni | Co | Cr | Al | Ta | |
|---|---|---|---|---|---|
| FCC | 26.2 ± 1.5 | 37.5 ± 1.4 | 33.3 ± 1.1 | 2.4 ± 0.4 | 0.7 ± 0.2 |
| L12 | 43.6 ± 0.4 | 26.4 ± 0.1 | 17.2 ± 0.6 | 7.6 ± 0.4 | 5.2 ± 0.2 |
| σ | 8.9 ± 0.1 | 33.6 ± 0.1 | 57.1 ± 0.1 | 0.2 ± 0.1 | 0.3 ± 0.1 |
Fig. 2. Characteristics of L12-precipitates (red arrows) in the Al6Ta2 MEA aged at 750 °C for various durations. HAADF-STEM images of nanoscale L12-particles in the Al6Ta2 MEA aged at 750 °C for (a) 1 h, (b) 64 h, and (c) 300 h, and (a1-a3) the corresponding precipitate size distributions; (d) aging time dependence of the nanoparticle features, in terms of the average diameter (d), number density (Nv), volume fraction (f), and edge-to-edge inter-precipitate distance (l).
| t (h) | d (nm) | Nv (× 1022 m-3) | f (%) | l (nm) |
|---|---|---|---|---|
| 1 | 7.06 | 88.5 | 16.3 | 6.9 |
| 64 | 22.4 | 3.91 | 23.1 | 15.5 |
| 300 | 36.52 | 0.98 | 25.1 | 23 |
Table 2. Temporal evolution (t) of the nanoparticle features at 750 °C, in terms of the average diameter (d), number density (Nv), volume fraction (f), and edge-to-edge interparticle spacing (l).
| t (h) | d (nm) | Nv (× 1022 m-3) | f (%) | l (nm) |
|---|---|---|---|---|
| 1 | 7.06 | 88.5 | 16.3 | 6.9 |
| 64 | 22.4 | 3.91 | 23.1 | 15.5 |
| 300 | 36.52 | 0.98 | 25.1 | 23 |
Fig. 3. Nature of the L12-nanoparticles. (a) HRTEM image along the [011] zone axis exhibiting the coherent particle/matrix interface along with the Fast Fourier transform (FFT) patterns for (a1) the precipitate and (a2) matrix, respectively; (b) STEM-EDS mapping, showing the elemental partitioning in the nanoparticles and matrix; (c) elemental partitioning coefficient in aged Al6Ta2 alloy.
Fig. 4. Mechanical response and fracture behavior of the Al6Ta2 MEA. (a) Engineering stress-strain curves of the recrystallized and aged Al6Ta2 alloy under 750 °C for 1, 4, 16, and 64 h, respectively; (b) true stress-strain curves vs corresponding strain hardening rates of the recrystallized and representative aged Al6Ta2 MEAs; (c1) cross-sectional microstructures near fracture surface of failure samples and (c2) fractography morphologies of 750/1 sample, as well as (d1 and d2) the counterparts in the 750/64 sample. The GB, cracks, σ-phase, and dimples were marked by yellow, red, wathet, and iridescent arrows, respectively.
Fig. 5. Typically deformed microstructures of aged Al6Ta2 MEA stretched to fracture. (a1) A high-density tangled-dislocations and (a2) directional HDDWs; (a3 and a4) the occasionally formed SFs; (a5) observed dislocation-precipitate interactions in the deformed 750/1 alloy; prevalent (b1) nanoscale SF-bundles and (b2) SF-networks along with (b3) the HRTEM and (b4) FFT pattern of SF; (b5) strong interactions between dislocation/SFs and precipitates, showing SFs penetrate a nanoparticle in the deformed 750/64 alloy. The SFs were indicated by red arrows in the above TEM images.
Fig. 6. (a) Schematic sketches illustrating the plastic mechanisms related to the L12 particle features and the substructures in the 750/1 and 750/64 alloys, respectively; (b) schematic of mechanistic deformation mode transition, displaying that larger L, lower γSF together with higher applied stress in the 750/64 alloy favors the activation of SFs.
Fig. 7. Contributions of each hardening mechanism in the aged Al6Ta2 MEA under 750 °C for 64 h, along with the calculated σy (Cal. σy) and experimental σy (Exp. σy).
Fig. 8. (a) LSW relationship illuminating the coarsening of the L12-precipitates in the designed Al6Ta2 MEA and the reported (CoNiCrx)94Al3Ti3 system [69]; (b) comparison of precipitate coarsening rate k in the current Al6Ta2 MEA, typical conventional Ni-based alloys along with reported M/HEAs at 750 °C.
| Alloys | k (m3/s) | Refs. | |
|---|---|---|---|
| M/HEAs | (NiCoCr)92Al6Ta2 | 3.17 × 10-30 | This work |
| (CoCr0.1Ni)94Ti3Al3 | 1.84 × 10-28 | [ | |
| (CoCr0.2Ni)94Ti3Al3 | 7.73 × 10-29 | [ | |
| (CoCr0.3Ni)94Ti3Al3 | 3.66 × 10-29 | [ | |
| (NiCoFeCr)94Ti2Al4 | 4.83 × 10-29 | [ | |
| Traditional Ni-based alloys | Ni-13.6Al | 3.0 × 10-27 | [ |
| Ni-12Ti | 2.17 × 10-27 | [ | |
| Ni-17.6Cr-9.7Al | 4.92 × 10-28 | [ | |
| Ni-21.7Co-13.4Al | 8.32 × 10-28 | [ | |
| Nimonic 105 | 3.33 × 10-28 | [ | |
| Inconel 939 | 2.67 × 10-28 | [ | |
| Nimonic PE16 | 1.38 × 10-28 | [ |
Table 3. Coarsening rate (k) of L12 precipitates for various multicomponent alloys and conventional superalloys under 750 °C.
| Alloys | k (m3/s) | Refs. | |
|---|---|---|---|
| M/HEAs | (NiCoCr)92Al6Ta2 | 3.17 × 10-30 | This work |
| (CoCr0.1Ni)94Ti3Al3 | 1.84 × 10-28 | [ | |
| (CoCr0.2Ni)94Ti3Al3 | 7.73 × 10-29 | [ | |
| (CoCr0.3Ni)94Ti3Al3 | 3.66 × 10-29 | [ | |
| (NiCoFeCr)94Ti2Al4 | 4.83 × 10-29 | [ | |
| Traditional Ni-based alloys | Ni-13.6Al | 3.0 × 10-27 | [ |
| Ni-12Ti | 2.17 × 10-27 | [ | |
| Ni-17.6Cr-9.7Al | 4.92 × 10-28 | [ | |
| Ni-21.7Co-13.4Al | 8.32 × 10-28 | [ | |
| Nimonic 105 | 3.33 × 10-28 | [ | |
| Inconel 939 | 2.67 × 10-28 | [ | |
| Nimonic PE16 | 1.38 × 10-28 | [ |
| [1] |
W.D. Li, D. Xie, D.Y. Li, Y. Zhang, Y.F. Gao, P.K. Liaw, Prog. Mater. Sci. 118 (2021) 100777.
DOI URL |
| [2] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
| [3] |
E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. 4 (2019) 515-534.
DOI URL |
| [4] |
B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H.B. Bei, Z.G. Wu, E.P. George, R.O. Ritchie, Nat. Commun. 7 (2016) 10602.
DOI URL PMID |
| [5] |
G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E.P. George, Acta Mater. 128 (2017) 292-303.
DOI URL |
| [6] |
Y. Ma, F.P. Yuan, M.X. Yang, P. Jiang, E. Ma, X.L. Wu, Acta Mater. 148 (2018) 407-418.
DOI URL |
| [7] |
M.P. Agustianingrum, S. Yoshida, N. Tsuji, N. Park, J. Alloy. Compd. 781 (2019) 866-872.
DOI URL |
| [8] |
I. Moravcik, H. Hadraba, L.L. Li, I. Dlouhy, D. Raabe, Z.M. Li, Scr. Mater. 178 (2020) 391-397.
DOI URL |
| [9] |
D.D. Zhang, H. Wang, J.Y. Zhang, H. Xue, G. Liu, J. Sun, J. Mater. Sci. Technol. 87 (2021) 184-195.
DOI URL |
| [10] |
D.D. Zhang, J.Y. Zhang, J. Kuang, G. Liu, J. Sun, Acta Mater. 220 (2021) 117288.
DOI URL |
| [11] |
P. Sathiyamoorthi, J. Moon, J.W. Bae, P. Asghari-Rad, H.S. Kim, Scr. Mater. 163 (2019) 152-156.
DOI URL |
| [12] |
M.X. Yang, D.S. Yan, F.P. Yuan, P. Jiang, E. Ma, X.L. Wu, P. Natl. Acad. Sci. U. S. A. 115 (2018) 7224-7229.
DOI URL |
| [13] |
C.E. Slone, J. Miao, E.P. George, M.J. Mills, Acta Mater. 165 (2019) 496-507.
DOI URL |
| [14] |
D.D. Zhang, J.Y. Zhang, J. Kuang, G. Liu, J. Sun, Acta Mater. 233 (2022) 117981.
DOI URL |
| [15] |
X.H. Du, W.P. Li, H.T. Chang, T. Yang, G.S. Duan, B.L. Wu, J.C. Huang, F.R. Chen, C. T. Liu, W.S. Chuang, Y. Lu, M.L. Sui, E.W. Huang, Nat. Commun. 11 (2020) 2390.
DOI URL PMID |
| [16] |
Y.L. Zhao, T. Yang, Y. Tong, J. Wang, J.H. Luan, Z.B. Jiao, D. Chen, Y. Yang, A. Hu, C. T. Liu, J.J. Kai, Acta Mater. 138 (2017) 72-82.
DOI URL |
| [17] |
Y.J. Liang, L.J. Wang, Y.R. Wen, B.Y. Cheng, Q.L. Wu, T.Q. Cao, Q. Xiao, Y.F. Xue, G. Sha, Y.D. Wang, Y. Ren, X.Y. Li, L. Wang, F.C. Wang, H.N. Cai, Nat. Commun. 9 (2018) 4063.
DOI URL |
| [18] | T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu, C.T. Liu, Science 362 (2018) 933-937. |
| [19] | L.Y. Liu, Y. Zhang, J.H. Han, X.Y. Wang, W.Q. Jiang, C.T. Liu, Z.W. Zhang, P.K. Liaw, Adv. Sci. 8 (2021) e2100870. |
| [20] |
T. Yang, Y.L. Zhao, B.X. Cao, J.J. Kai, C.T. Liu, Scr. Mater. 183 (2020) 39-44.
DOI URL |
| [21] |
T. Zheng, X.B. Hu, F. He, Q.F. Wu, B. Han, D. Chen, J.J. Li, Z.J. Wang, J.C. Wang, J.J. Kai, Z.H. Xia, C.T. Liu, J. Mater. Sci. Technol. 69 (2021) 156-167.
DOI URL |
| [22] |
S.Y. Peng, Y.J. Wei, H.J. Gao, P. Natl. Acad. Sci. U. S. A. 117 (2020) 5204-5209.
DOI URL |
| [23] | S.H. Jiang, H. Wang, Y. Wu, X.J. Liu, H.H. Chen, M.J. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, M.W. Chen, Y.D. Wang, Z.P. Lu, Nature 544 (2017) 460-464. |
| [24] |
Y. Tong, D. Chen, B. Han, J. Wang, R. Feng, T. Yang, C. Zhao, Y.L. Zhao, W. Guo, Y. Shimizu, C.T. Liu, P.K. Liaw, K. Inoue, Y. Nagai, A. Hu, J.J. Kai, Acta Mater. 165 (2019) 228-240.
DOI URL |
| [25] |
J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater. 102 (2016) 187-196.
DOI URL |
| [26] |
D.M. Collins, H.J. Stone, Int. J. Plast. 54 (2014) 96-112.
DOI URL |
| [27] |
Y.Y. Zhao, H.W. Chen, Z.P. Lu, T.G. Nieh, Acta Mater. 147 (2018) 184-194.
DOI URL |
| [28] | A.G. Dowson, Br. Dent. J. 90 (1951) 205-211. |
| [29] |
P. La Roca, A. Baruj, C.E. Sobrero, J.A. Malarría, M. Sade, J. Alloy. Compd. 708 (2017) 422-427.
DOI URL |
| [30] | H.B. Luo, F.L. Shan, Y.L. Huo, Y.M. Wang, Thin Solid Films 339 (1999) 305-308. |
| [31] | R.R. Unocic, L. Kovarik, C. Shen, P.M. Sarosi, Y. Wang, J. Li, S. Ghosh, M.J. Mills, Superalloys 8 (2008) 315. |
| [32] |
Y.L. Zhao, Y.R. Li, G.M. Yeli, J.H. Luan, S.F. Liu, W.T. Lin, D. Chen, X.J. Liu, J.J. Kai, C. T. Liu, T. Yang, Acta Mater. 223 (2022) 117480.
DOI URL |
| [33] | Y. Yang, T.Y. Chen, L.Z. Tan, J.D. Poplawsky, K. An, Y.L. Wang, G.D. Samolyuk, K. Littrell, A.R. Lupini, A. Borisevich, E.P. George, Nature 595 (2021) 245-249. |
| [34] |
Y. Ru, H. Zhang, Y.L. Pei, S.S. Li, X.B. Zhao, S.K. Gong, H.B. Xu, Scr. Mater. 147 (2018) 21-26.
DOI URL |
| [35] |
C.Z. Zhu, R. Zhang, C.Y. Cui, Y.Z. Zhou, F.G. Liang, X. Liu, X.F. Sun, Mater. Sci. Eng. A 802 (2021) 140646.
DOI URL |
| [36] |
S. Tang, L.K. Ning, T.Z. Xin, Z. Zheng, J. Mater. Sci. Technol. 32 (2016) 172-176.
DOI URL |
| [37] |
J.C. Zhang, L. Liu, T.W. Huang, J. Chen, K.L. Cao, X.X. Liu, J. Zhang, H.Z. Fu, J. Mater. Sci. Technol. 62 (2021) 1-10.
DOI URL |
| [38] |
J.C. Zhang, T.W. Huang, F. Lu, K.L. Cao, D. Wang, J. Zhang, J. Zhang, H.J. Su, L. Liu, J. Alloy. Compd. 876 (2021) 160114.
DOI URL |
| [39] |
E.A. Marquis, D.N. Seidman, Acta Mater. 49 (2001) 1909-1919.
DOI URL |
| [40] |
T. Yang, Y.L. Zhao, L. Fan, J. Wei, J.H. Luan, W.H. Liu, C. Wang, Z.B. Jiao, J.J. Kai, C. T. Liu, Acta Mater. 189 (2020) 47-59.
DOI URL |
| [41] |
W.J. Lu, X. Luo, B. Huang, P.T. Li, Y.Q. Yang, Scr. Mater. 212 (2022) 114576.
DOI URL |
| [42] |
Y.L. Zhao, T. Yang, B. Han, J.H. Luan, D. Chen, W. Kai, C.T. Liu, J. Kai, Mater. Res. Lett. 7 (2019) 152-158.
DOI URL |
| [43] | J.Y. He, H. Wang, Y. Wu, X.J. Liu, H.H. Mao, T.G. Nieh, Z.P. Lu, Intermetallics 79 (2016) 41-52. |
| [44] |
B.X. Cao, H.J. Kong, Z.Y. Ding, S.W. Wu, J.H. Luan, Z.B. Jiao, J. Lu, C.T. Liu, T. Yang, Scr. Mater. 199 (2021) 113826.
DOI URL |
| [45] |
P. Pandey, S. Kashyap, D. Palanisamy, A. Sharma, K. Chattopadhyay, Acta Mater. 177 (2019) 82-95.
DOI URL |
| [46] |
S. Gao, J.S. Hou, F. Yang, Y.A. Guo, L.Z. Zhou, J. Alloy. Compd. 729 (2017) 903-913.
DOI URL |
| [47] |
J.C. Zhang, T.W. Huang, K.L. Cao, J. Chen, H.J. Zong, D. Wang, J. Zhang, J. Zhang, L. Liu, J. Mater. Sci. Technol. 75 (2021) 68-77.
DOI URL |
| [48] |
L. Zheng, G.Q. Zhang, T.L. Lee, M.J. Gorley, Y. Wang, C.B. Xiao, Z. Li, Mater. Des. 61 (2014) 61-69.
DOI URL |
| [49] |
S. Gao, B. He, L.Z. Zhou, J.S. Hou, Corros. Sci. 170 (2020) 108682.
DOI URL |
| [50] |
S. Guo, C. Ng, J. Lu, C.T. Liu, J. Appl. Phys. 109 (2011) 103505.
DOI URL |
| [51] |
F. He, D. Chen, B.F. Han, Q.F. Wu, Z.J. Wang, S.L. Wei, D.X. Wei, J.C. Wang, C. T. Liu, J.J. Kai, Acta Mater. 167 (2019) 275-286.
DOI URL |
| [52] |
K.S. Ming, L.L. Li, Z.M. Li, X.F. Bi, J. Wang, Sci. Adv. 5 (2019) eaay0639.
DOI URL |
| [53] |
G. Laplanche, Acta Mater. 199 (2020) 193-208.
DOI URL |
| [54] |
G. Laplanche, S. Berglund, C. Reinhart, A. Kostka, F. Fox, E.P. George, Acta Mater. 161 (2018) 338-351.
DOI URL |
| [55] |
C.S. Jayanth, P. Nash, Mater. Sci. Technol. 6 (1990) 405-413.
DOI URL |
| [56] |
B.X. Cao, T. Yang, L. Fan, J.H. Luan, Z.B. Jiao, C.T. Liu, Mater. Sci. Eng. A 797 (2020) 140020.
DOI URL |
| [57] |
K.S. Ming, X.F. Bi, J. Wang, Int. J. Plast. 100 (2018) 177-191.
DOI URL |
| [58] | M.W. Chen, E. Ma, K.J. Hemker, H.W. Sheng, Y.M. Wang, X.M. Cheng, Science 30 0 (20 03) 1275-1277. |
| [59] |
K.P.D. Lagerlöf, J. Castaing, P. Pirouz, A.H. Heuer, Philos. Mag. A 82 (2002) 2841-2854.
DOI URL |
| [60] |
Z. Wu, H. Bei, G.M. Pharr, E.P. George, Acta Mater. 81 (2014) 428-441.
DOI URL |
| [61] |
C. Varvenne, A. Luque, W.A. Curtin, Acta Mater. 118 (2016) 164-176.
DOI URL |
| [62] |
C. Varvenne, G.P.M. Leyson, M. Ghazisaeidi, W.A. Curtin, Acta Mater. 124 (2017) 660-683.
DOI URL |
| [63] | B.L. Yin, F. Maresca, W.A. Curtin, Acta Mater. 188 (2020) 486-491. |
| [64] |
C. Varvenne, W.A. Curtin, Scr. Mater. 138 (2017) 92-95.
DOI URL |
| [65] | W.P. Li, T.H. Chou, T. Yang, W.S. Chuang, J.C. Huang, J.H. Luan, X.K. Zhang, X. F. Huo, H.J. Kong, Q.F. He, X.H. Du, C. Liu, F.R. Chen, Appl. Mater. Today 23 (2021) 101037. |
| [66] |
V.C. Nardone, K.M. Prewo, Scr. Metal. 20 (1986) 43-48.
DOI URL |
| [67] |
G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, E. Ma, Nat. Mater. 12 (2013) 344-350.
DOI URL PMID |
| [68] |
Y.T. Wu, C. Li, X.C. Xia, H.Y. Liang, Q.Q. Qi, Y.C. Liu, J. Mater. Sci. Technol. 67 (2021) 95-104.
DOI URL |
| [69] | X. Bai, W. Fang, J.W. Lv, R.B. Chang, H.Y. Yu, J.H. Yan, X. Zhang, F.X. Yin, Inter- metallics 132 (2021) 107125. |
| [70] |
A.M. Irisarri, J.J. Urcola, M. Fuentes, Mater. Sci. Technol. 1 (1985) 516-519.
DOI URL |
| [71] |
C.G. Garay-Reyes, F. Hernández-Santiago, N. Cayetano-Castro, V.M. López-Hi-rata, J. García-Rocha, J.L. Hernández-Rivera, H.J. Dorantes-Rosales, J.J. Cruz-Rivera, Mater. Charact. 83 (2013) 35-42.
DOI URL |
| [72] |
C.K.L. Davies, P. Nash, R.N. Stevens, J. Mater. Sci. 15 (1980) 1521-1532.
DOI URL |
| [73] |
P.K. Footner, B.P. Richards, J. Mater. Sci. 17 (1982) 2141-2153.
DOI URL |
| [74] |
B. Reppich, W. Kühlein, G. Meyer, D. Puppel, M. Schulz, G. Schumann, Mater. Sci. Eng. A 83 (1986) 45-63.
DOI URL |
| [75] |
T. Philippe, P.W. Voorhees, Acta Mater. 61 (2013) 4237-4244.
DOI URL |
| [76] |
S. Meher, M.C. Carroll, T.M. Pollock, L.J. Carroll, Mater. Des. 140 (2018) 249-256.
DOI URL |
| [77] |
Y.Y. Huang, Z.G. Mao, R.D. Noebe, D.N. Seidman, Acta Mater. 121 (2016) 288-298.
DOI URL |
| [78] | K.Y. Tsai, M.H. Tsai, J.W. Yeh, Acta Mater. 61 (2013) 4887-4897. |
| [79] |
S. Guo, C.T. Liu, Prog. Nat. Sci. 21 (2011) 433-446.
DOI URL |
| [80] |
C. Booth-Morrison, R.D. Noebe, D.N. Seidman, Acta Mater. 57 (2009) 909-920.
DOI URL |
| [1] | Huan Liu, Hai Wang, Ling Ren, Dong Qiu, Ke Yang. Antibacterial copper-bearing titanium alloy prepared by laser powder bed fusion for superior mechanical performance [J]. J. Mater. Sci. Technol., 2023, 132(0): 100-109. |
| [2] | Jing Peng, Jia Li, Bin Liu, Jian Wang, Haotian Chen, Hui Feng, Xin Zeng, Heng Duan, Yuankui Cao, Junyang He, Peter K. Liaw, Qihong Fang. Formation process and mechanical properties in selective laser melted multi-principal-element alloys [J]. J. Mater. Sci. Technol., 2023, 133(0): 12-22. |
| [3] | Xudong Liu, Jiangkun Fan, Kai Cao, Fulong Chen, Ruihao Yuan, Degui Liu, Bin Tang, Hongchao Kou, Jinshan Li. Creep anisotropy behavior, deformation mechanism, and its efficient suppression method in Inconel 625 superalloy [J]. J. Mater. Sci. Technol., 2023, 133(0): 58-76. |
| [4] | Jingbo Gao, Yuting Jin, Yongqiang Fan, Dake Xu, Lei Meng, Cong Wang, Yuanping Yu, Deliang Zhang, Fuhui Wang. Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying [J]. J. Mater. Sci. Technol., 2022, 102(0): 159-165. |
| [5] | Haoming Pang, Zhenbang Xu, Longjiang Shen, Jun Li, Junshuo Zhang, Zhiyuan Li, Shouhu Xuan, Xinglong Gong. The dynamic compressive properties of magnetorheological plastomers: enhanced magnetic-induced stresses by non-magnetic particles [J]. J. Mater. Sci. Technol., 2022, 102(0): 195-203. |
| [6] | Gang Zhou, Yan Yang, Hanzhu Zhang, Faping Hu, Xueping Zhang, Chen Wen, Weidong Xie, Bin Jiang, Xiaodong Peng, Fusheng Pan. Microstructure and strengthening mechanism of hot-extruded ultralight Mg-Li-Al-Sn alloys with high strength [J]. J. Mater. Sci. Technol., 2022, 103(0): 186-196. |
| [7] | Lei Li, Huanzheng Jiao, Congfu Liu, Lin Yang, Yusong Suo, Ruixue Zhang, Tie Liu, Jianzhong Cui. Microstructures, mechanical properties and in vitro corrosion behavior of biodegradable Zn alloys microalloyed with Al, Mn, Cu, Ag and Li elements [J]. J. Mater. Sci. Technol., 2022, 103(0): 244-260. |
| [8] | Shilu Luo, Tiantian Xiang, Jingwen Dong, Fengmei Su, Youxin Ji, Chuntai Liu, Yuezhan Feng. A double crosslinking MXene/cellulose nanofiber layered film for improving mechanical properties and stable electromagnetic interference shielding performance [J]. J. Mater. Sci. Technol., 2022, 129(0): 127-134. |
| [9] | Young-Kyun Kim, Kee-Ahn Lee. Effect of carrier gas species on the microstructure and compressive deformation behaviors of ultra-strong pure copper manufactured by cold spray additive manufacturing [J]. J. Mater. Sci. Technol., 2022, 97(0): 264-271. |
| [10] | Jun Xu, Bin Jiang, Yuehua Kang, Jun Zhao, Weiwen Zhang, Kaihong Zheng, Fusheng Pan. Tailoring microstructure and texture of Mg-3Al-1Zn alloy sheets through curve extrusion process for achieving low planar anisotropy [J]. J. Mater. Sci. Technol., 2022, 113(0): 48-60. |
| [11] | Jun Wang, Yao Lu, Fanghui Jia, Wenzhen Xia, Fei Lin, Jian Han, Ruichao Wang, Zengxi Pan, Huijun Li, Zhengyi Jiang. Effects of inter-layer remelting frequency on the microstructure evolution and mechanical properties of equimolar CoCrFeNiMn high entropy alloys during in-situ powder-bed arc additive manufacturing (PBAAM) process [J]. J. Mater. Sci. Technol., 2022, 113(0): 90-104. |
| [12] | Tianbing He, Tiwen Lu, Daniel Şopu, Xiaoliang Han, Haizhou Lu, Kornelius Nielsch, Jürgen Eckert, Nevaf Ciftci, Volker Uhlenwinkel, Konrad Kosiba, Sergio Scudino. Mechanical behavior and deformation mechanism of shape memory bulk metallic glass composites synthesized by powder metallurgy [J]. J. Mater. Sci. Technol., 2022, 114(0): 42-54. |
| [13] | A. Shuitcev, Y. Ren, B. Sun, G.V. Markova, L. Li, Y.X. Tong, Y.F. Zheng. Precipitation and coarsening kinetics of H-phase in NiTiHf high temperature shape memory alloy [J]. J. Mater. Sci. Technol., 2022, 114(0): 90-101. |
| [14] | Yong Luo, Yuhui Xie, Wei Geng, Junhan Chu, Hua Wu, Delong Xie, Xinxin Sheng, Yi Mei. Boosting fire safety and mechanical performance of thermoplastic polyurethane by the face-to-face two-dimensional phosphorene/MXene architecture [J]. J. Mater. Sci. Technol., 2022, 129(0): 27-39. |
| [15] | Holden Hyer, Le Zhou, Sharon Park, Thinh Huynh, Abhishek Mehta, Saket Thapliyal, Rajiv S. Mishra, Yongho Sohn. Elimination of extraordinarily high cracking susceptibility of aluminum alloy fabricated by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 50-58. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
