J. Mater. Sci. Technol. ›› 2023, Vol. 132: 213-222.DOI: 10.1016/j.jmst.2022.05.051
• Research Article • Previous Articles Next Articles
Yimian Chena, Shuize Wanga,b,*(
), Jie Xiongc, Guilin Wua,b,*(
), Junheng Gaoa,b, Yuan Wua, Guoqiang Maa, Hong-Hui Wua,b,*(
), Xinping Maoa,b
Received:2022-01-17
Revised:2022-05-11
Accepted:2022-05-27
Published:2023-01-01
Online:2022-07-06
Contact:
Shuize Wang,Guilin Wu,Hong-Hui Wu
About author:wuhonghui@ustb.edu.cn (H.-H. Wu).Yimian Chen, Shuize Wang, Jie Xiong, Guilin Wu, Junheng Gao, Yuan Wu, Guoqiang Ma, Hong-Hui Wu, Xinping Mao. Identifying facile material descriptors for Charpy impact toughness in low-alloy steel via machine learning[J]. J. Mater. Sci. Technol., 2023, 132: 213-222.
Fig. 1. A flowchart of the ML-based design strategies in low-alloy steel. Strategy I: an ML model with composition ${{C}_{i}}$ as input features; Strategy II: an ML model with composition ${{C}_{i}}$ and heat treatment parameters ${{H}_{i}}$ as the input features; Strategy III: an ML model with composition ${{C}_{i}}$, heat treatment parameters Hi, and physical features ${{P}_{i}}$ as input features.
| Features | Description | Max | Min | Mean | SD | |
|---|---|---|---|---|---|---|
| Inputs | Fe | wt.% of Iron | 99.072 | 84.003 | 96.431 | 2.980 |
| C | wt.% of Carbon | 1.440 | 0.090 | 0.409 | 0.156 | |
| Si | wt.% of Silicon | 2.050 | 0.160 | 0.328 | 0.307 | |
| Mn | wt.% of Manganese | 1.600 | 0.310 | 0.814 | 0.286 | |
| P | wt.% of Phosphorus | 0.031 | 0.004 | 0.017 | 0.005 | |
| S | wt.% of Sulphur | 0.030 | 0.001 | 0.014 | 0.006 | |
| Ni | wt.% of Nickel | 2.780 | 0.010 | 0.464 | 0.825 | |
| Cr | wt.% of Chromium | 12.700 | 0.010 | 1.353 | 2.889 | |
| Mo | wt.% of Molybdenum | 1.320 | 0 | 0.096 | 0.185 | |
| Ti | wt.% of Titanium | 0.030 | 0 | 0.0003 | 0.002 | |
| Cu | wt.% of Copper | 0.260 | 0 | 0.0596 | 0.048 | |
| Co | wt.% of Cobalt | 0.037 | 0 | 0.00008 | 0.00176 | |
| V | wt.% of Vanadium | 0.930 | 0 | 0.015 | 0.1037 | |
| Al | wt.% of Aluminum | 0.04 | 0 | 0.00126 | 0.00589 | |
| N | wt.% of Nitrogen | 0.0153 | 0 | 0.00034 | 0.0017 | |
| O | wt.% of Oxygen | 0.003 | 0 | 0.00007 | 0.00036 | |
| HV | Vickers hardness | 731 | 132 | 305.057 | 89.601 | |
| TS | Tensile strength (MPa) | 2448 | 455 | 967.675 | 312.840 | |
| YS | Yield strength (MPa) | 2006 | 290 | 830.941 | 283.999 | |
| EL | Elongation (%) | 40 | 0.54 | 20.628 | 5.529 | |
| RA | Reduction of area (%) | 74 | 0.33 | 62.432 | 10.194 | |
| YTR | Yield strength to tensile strength ratio | 1 | 0.608 | 0.852 | 0.072 | |
| TEP | Tensile strength and elongation's product (GPa·%) | 262.46 | 8.251 | 182.748 | 24.394 | |
| NT | Normalizing temperature (°C) | 960 | 0 | 816.84 | 190.8 | |
| Nt | Normalizing time (h) | 0.5 | 0 | 0.475 | 0.1 | |
| QT | Quenching temperature (°C) | 1025 | 0 | 837.795 | 140.5 | |
| Qt | Quenching time (h) | 1 | 0 | 0.489 | 0.08 | |
| TT | Tempering temperature (°C) | 750 | 0 | 580.068 | 122.8 | |
| Tt | Tempering time (h) | 1 | 0 | 0.975 | 0.156 | |
| Output | CIT | Charpy impact toughness (J) | 248.8 | 3.488 | 122.636 | 47.984 |
Table 1. 29 variables of the used CIT data.
| Features | Description | Max | Min | Mean | SD | |
|---|---|---|---|---|---|---|
| Inputs | Fe | wt.% of Iron | 99.072 | 84.003 | 96.431 | 2.980 |
| C | wt.% of Carbon | 1.440 | 0.090 | 0.409 | 0.156 | |
| Si | wt.% of Silicon | 2.050 | 0.160 | 0.328 | 0.307 | |
| Mn | wt.% of Manganese | 1.600 | 0.310 | 0.814 | 0.286 | |
| P | wt.% of Phosphorus | 0.031 | 0.004 | 0.017 | 0.005 | |
| S | wt.% of Sulphur | 0.030 | 0.001 | 0.014 | 0.006 | |
| Ni | wt.% of Nickel | 2.780 | 0.010 | 0.464 | 0.825 | |
| Cr | wt.% of Chromium | 12.700 | 0.010 | 1.353 | 2.889 | |
| Mo | wt.% of Molybdenum | 1.320 | 0 | 0.096 | 0.185 | |
| Ti | wt.% of Titanium | 0.030 | 0 | 0.0003 | 0.002 | |
| Cu | wt.% of Copper | 0.260 | 0 | 0.0596 | 0.048 | |
| Co | wt.% of Cobalt | 0.037 | 0 | 0.00008 | 0.00176 | |
| V | wt.% of Vanadium | 0.930 | 0 | 0.015 | 0.1037 | |
| Al | wt.% of Aluminum | 0.04 | 0 | 0.00126 | 0.00589 | |
| N | wt.% of Nitrogen | 0.0153 | 0 | 0.00034 | 0.0017 | |
| O | wt.% of Oxygen | 0.003 | 0 | 0.00007 | 0.00036 | |
| HV | Vickers hardness | 731 | 132 | 305.057 | 89.601 | |
| TS | Tensile strength (MPa) | 2448 | 455 | 967.675 | 312.840 | |
| YS | Yield strength (MPa) | 2006 | 290 | 830.941 | 283.999 | |
| EL | Elongation (%) | 40 | 0.54 | 20.628 | 5.529 | |
| RA | Reduction of area (%) | 74 | 0.33 | 62.432 | 10.194 | |
| YTR | Yield strength to tensile strength ratio | 1 | 0.608 | 0.852 | 0.072 | |
| TEP | Tensile strength and elongation's product (GPa·%) | 262.46 | 8.251 | 182.748 | 24.394 | |
| NT | Normalizing temperature (°C) | 960 | 0 | 816.84 | 190.8 | |
| Nt | Normalizing time (h) | 0.5 | 0 | 0.475 | 0.1 | |
| QT | Quenching temperature (°C) | 1025 | 0 | 837.795 | 140.5 | |
| Qt | Quenching time (h) | 1 | 0 | 0.489 | 0.08 | |
| TT | Tempering temperature (°C) | 750 | 0 | 580.068 | 122.8 | |
| Tt | Tempering time (h) | 1 | 0 | 0.975 | 0.156 | |
| Output | CIT | Charpy impact toughness (J) | 248.8 | 3.488 | 122.636 | 47.984 |
| Abb. | Description | Formula |
|---|---|---|
| AR | Atomic radii | |
| PE | Pauling electronegativity | |
| CR | Clementi's atomic radii | |
| CS | Pettifor chemical scale | |
| MR | Metallic radius | |
| VE | Valance electron | |
| DOR | Waber-Cromer pseudopotential radii | |
| DEN | density | |
| E1 | First ionization energy | |
| CE | Cohesive energy | |
| NE | Number of elements | |
| AN | Atomic number | |
| AM | Atomic mass | |
| YM | Young's modulus | |
| MP | Melting point | |
| PR | Poisson's ratio | |
| BP | Boiling point | |
| EBE | Electron binding energies | |
| CPE | Mean concentration of PE | |
| CCR | Mean concentration of CR | |
| CCS | Mean concentration of CS | |
| CMR | Mean concentration of MR | |
| CVE | Mean concentration of VE | |
| CDOR | Mean concentration of DOR | |
| AR difference (Fe-based) | ||
| VE difference (Fe-based) | ||
| VE difference (C-based) | ||
| PE difference (Fe-based) | ||
| PE difference (C-based) |
Table 2. List of atomic features.
| Abb. | Description | Formula |
|---|---|---|
| AR | Atomic radii | |
| PE | Pauling electronegativity | |
| CR | Clementi's atomic radii | |
| CS | Pettifor chemical scale | |
| MR | Metallic radius | |
| VE | Valance electron | |
| DOR | Waber-Cromer pseudopotential radii | |
| DEN | density | |
| E1 | First ionization energy | |
| CE | Cohesive energy | |
| NE | Number of elements | |
| AN | Atomic number | |
| AM | Atomic mass | |
| YM | Young's modulus | |
| MP | Melting point | |
| PR | Poisson's ratio | |
| BP | Boiling point | |
| EBE | Electron binding energies | |
| CPE | Mean concentration of PE | |
| CCR | Mean concentration of CR | |
| CCS | Mean concentration of CS | |
| CMR | Mean concentration of MR | |
| CVE | Mean concentration of VE | |
| CDOR | Mean concentration of DOR | |
| AR difference (Fe-based) | ||
| VE difference (Fe-based) | ||
| VE difference (C-based) | ||
| PE difference (Fe-based) | ||
| PE difference (C-based) |
Fig. 2. Correlation matrix for the original 42 features and the targeted CIT. Positive and negative correlations were indicated by blue and red, respectively. In the upper-right part, the greater the filling score of the circles in each pie chart, the better the correlation. In the lower-left part, circles with larger areas denote higher relevance.
Fig. 3. Further selection of facile features for the CIT model. (a) PCC and RMSE of each feature in a particular model, where features of the same cluster were marked with the same color. (b) The importance sequence of features to the CIT is evaluated by FSelector. (c) PCC and (d) RMSE of each possible linear model contain a subset of the six features in our training data. The red font indicates the best performers.
Fig. 4. Scatter plot matrices showing the correlation between TT, $\text{dA}{{\text{R}}^{\text{Fe}}}$, TS, RA, and CIT in the studied low-alloy steel. The color represents the value of CIT.
Fig. 5. Experimental values vs the predicted values by the optimal ML models that used (a)${{C}_{i}}$, (b) ${{C}_{i}}$ and ${{H}_{i}}$, (c)${{C}_{i}}$, TT, $\text{dA}{{\text{R}}^{\text{Fe}}}$, TS, and RA as features. Note: all data points align along the 45° diagonal line indicating a perfect model. (d) PCC and MAE of six typical ML models. (All models are evaluated by 10-fold cross-validation).
| Hyper-parameter | Value |
|---|---|
| population size | 1500 |
| generation | 20 |
| stopping_criteria | 0.01 |
| p_crossover | 0.7 |
| p_subtree_mutation | 0.1 |
| p_hoist_mutation | 0.05 |
| p_point_mutation | 0.1 |
| function set | add, sub, mul, div |
| parsimony coefficient | 0.01 |
| tournament factor | 20 |
| max_samples | 0.9 |
| const_range | (-1,1) |
Table 3. Hyper-parameters of used symbolic regression.
| Hyper-parameter | Value |
|---|---|
| population size | 1500 |
| generation | 20 |
| stopping_criteria | 0.01 |
| p_crossover | 0.7 |
| p_subtree_mutation | 0.1 |
| p_hoist_mutation | 0.05 |
| p_point_mutation | 0.1 |
| function set | add, sub, mul, div |
| parsimony coefficient | 0.01 |
| tournament factor | 20 |
| max_samples | 0.9 |
| const_range | (-1,1) |
Fig. 6. Experimental values vs predicted values by the formula. Note: all data points align along the 45° diagonal line indicating a perfect model. (The symbolic regression process was evaluated by the 10-fold cross-validation).
| [1] | M. Militzer, Science 298 (2002) 975-976. |
| [2] | M. Rashid, Science 208 (1980) 862-869. |
| [3] |
D. Bacon, D. Barnett, R.O. Scattergood, Prog. Mater. Sci. 23 (1980) 51-262.
DOI URL |
| [4] |
S.W. Wang, S.Z. Wang, H.H. Wu, Y.H. Wu, Z.L. Mi, X.P. Mao, Sci. Bull. 66 (2021) 958-961.
DOI URL |
| [5] |
R.O. Ritchie, Nat. Mater. 10 (2011) 817-822.
DOI URL PMID |
| [6] | J. Morris, Science 320 (2008) 1022-1023. |
| [7] | C.F. Wang, M.Q. Wang, J. Shi, W.J. Hui, H. Dong, J. Mater. Sci. Technol. 23 (2007) 659-664. |
| [8] |
H. Kim, Y. Ha, K.H. Kwon, M. Kang, N.J. Kim, S. Lee, Acta Mater. 87 (2015) 332-343.
DOI URL |
| [9] |
A. Rossoll, C. Berdin, C. Prioul, Int. J. Fract. 115 (2002) 205-226.
DOI URL |
| [10] |
J. Brnic, G. Turkalj, J. Niu, M. Canadija, D. Lanc, Mater. Des. 47 (2013) 497-504.
DOI URL |
| [11] |
P. Xie, S.C. Shen, C.L. Wu, J.H. Li, J.H. Chen, J. Mater. Sci. Technol. 89 (2021) 122-132.
DOI URL |
| [12] |
G. Oh, Int. J. Pres. Ves. Pip. 199 (2022) 104733.
DOI URL |
| [13] |
T. Thankachan, K. Sooryaprakash, Arab. J. Sci. Eng. 43 (2018) 1335-1343.
DOI URL |
| [14] |
C.S. Shen, C.C. Wang, P.E.J. Rivera-Díaz-del-Castillo, D.K. Xu, Q. Zhang, C. Zhang, W. Xu, J. Mater. Sci. Technol. 87 (2021) 258-268.
DOI URL |
| [15] |
Y.L. Liu, C. Niu, Z. Wang, Y. Gan, Y. Zhu, S.H. Sun, T. Shen, J. Mater. Sci. Technol. 57 (2020) 113-122.
DOI URL |
| [16] | K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, A. Walsh, Nature 559 (2018) 547-555. |
| [17] |
J. Xiong, S.Q. Shi, T.Y. Zhang, J. Mater. Sci. Technol. 87 (2021) 133-142.
DOI URL |
| [18] |
J. Xiong, T.Y. Zhang, J. Mater. Sci. Technol. 121 (2022) 99-104.
DOI URL |
| [19] |
Q. Lu, S.L. Liu, W. Li, X.J. Jin, Mater. Des. 192 (2020) 108696.
DOI URL |
| [20] |
X.Y. Zhou, J.H. Zhu, Y. Wu, X.S. Yang, T. Lookman, H.H. Wu, Acta Mater. 224 (2022) 117535.
DOI URL |
| [21] |
D.Z. Xue, D.Q. Xue, R.H. Yuan, Y.M. Zhou, P.V. Balachandran, X.D. Ding, J. Sun, T. Lookman, Acta Mater. 125 (2017) 532-541.
DOI URL |
| [22] |
C. Wen, Y. Zhang, C.X. Wang, D.Z Xue, Y. Bai, S. Antonov, L.H. Dai, T. Lookman, Y.J. Su, Acta Mater. 170 (2019) 109-117.
DOI URL |
| [23] |
C.C. Wang, C.G. Shen, X.J. Huo, C. Zhang, W. Xu, Nucl. Eng. Technol. 52 (2020) 1008-1012.
DOI URL |
| [24] |
Z.L. Wang, Y. Adachi, Mater. Sci. Eng. A 744 (2019) 661-670.
DOI URL |
| [25] | J. Fürnkranz, D. Gamberger, N. Lavrač, in: Foundations of Rule Learning, Springer, Berlin, 2012, pp. 1-17. |
| [26] | J. Fatigue Database, National institute for materials science, Japan, 2021, https://mits.nims.go.jp. Accessed 2 Dec. 2021. |
| [27] |
H.C. Chen, W. Xu, Q. Luo, Q. Li, Y. Zhang, J.J. Wang, K.C. Chou, J. Mater. Sci. Technol. 112 (2021) 291-300.
DOI URL |
| [28] | M.I. Jordan, T.M. Mitchell, Science 349 (2015) 255-260. |
| [29] | J.J. Filliben, Technometrics 17 (1975) 111-117. |
| [30] |
T. Chai, R.R. Draxler, Geosci. Model Dev. 7 (2014) 1247-1250.
DOI URL |
| [31] | B. Efron, J. Am. Stat. Assoc. 78 (1983) 316-331. |
| [32] |
Y. Zhang, C. Wen, C.X. Wang, S. Antonov, D.Z. Xue, Y. Bai, Y.J. Su, Acta Mater. 185 (2020) 528-539.
DOI URL |
| [33] | U. Sta ´nczyk, in: Feature Selection for Data and Pattern Recognition, Springer, Berlin, 2015, pp. 29-44. |
| [34] |
J.J. He, J.J. Li, C.B. Liu, C.X. Wang, Y. Zhang, C. Wen, D.Z. Xue, J.L. Cao, Y.J. Su, L. J. Qiao, Acta Mater. 209 (2021) 116815.
DOI URL |
| [35] |
F. Yan, K. Song, Y. Liu, S. Chen, J. Chen, J. Mater. Sci. 55 (2020) 15334-15349.
DOI URL |
| [36] |
X. Jiang, B.R. Jia, G.F. Zhang, C. Zhang, X. Wang, R.J. Zhang, H.Q. Yin, X.H. Qu, Y. Song, L. Su, Z.L. Mi, L. Hu, H. Ma, Scr. Mater. 186 (2020) 272-277.
DOI URL |
| [37] |
S. Takebayashi, K. Ushioda, N. Yoshinaga, S. Ogata, Mater. Trans. 54 (2013) 1110-1119.
DOI URL |
| [38] |
J. Xiong, T.Y. Zhang, S.Q. Shi, Sci. China Technol. Sci. 63 (2020) 1247-1255.
DOI URL |
| [39] |
B.C. Weng, Z.L. Song, R.L. Zhu, Q.Y. Yan, Q.D. Sun, C.G. Grice, Y.F. Yan, W.J. Yin, Nat. Commun. 11 (2020) 3513.
DOI URL |
| [40] |
Y. Wang, N. Wagner, J.M. Rondinelli, MRS Commun. 9 (2019) 793-805.
DOI URL |
| [41] | J.R. Koza, Stat. Comput. 4 (1994) 87-112. |
| [42] |
S. Sun, R. Ouyang, B. Zhang, T.Y. Zhang, MRS Bull. 44 (2019) 559-564.
DOI URL |
| [43] | S. Forrest, Science 261 (1993) 872-878. |
| [44] |
C. Loftis, K.P. Yuan, Y. Zhao, M. Hu, J.J. Hu, J. Phys. Chem. A 125 (2020) 435-450.
DOI URL |
| [45] |
Y.P. Diao, L.C. Yan, K.W. Gao, J. Mater. Sci. Technol. 109 (2022) 86-93.
DOI URL |
| [1] | Fu-Zhi Dai, Yinjie Sun, Yixiao Ren, Huimin Xiang, Yanchun Zhou. Segregation of solute atoms in ZrC grain boundaries and their effects on grain boundary strengths [J]. J. Mater. Sci. Technol., 2022, 101(0): 234-241. |
| [2] | Defang Tu, Jianqi Yan, Yunbo Xie, Jun Li, Shuo Feng, Mingxu Xia, Jianguo Li, Alex Po Leung. Accelerated design for magnetocaloric performance in Mn-Fe-P-Si compounds using machine learning [J]. J. Mater. Sci. Technol., 2022, 96(0): 241-247. |
| [3] | Changxin Wang, Yan Zhang, Cheng Wen, Mingli Yang, Turab Lookman, Yanjing Su, Tong-Yi Zhang. Symbolic regression in materials science via dimension-synchronous-computation [J]. J. Mater. Sci. Technol., 2022, 122(0): 77-83. |
| [4] | Kangyu Zhang, Lichang Yin, Gang Liu, Hui-Ming Cheng. Accurate structural descriptor enabled screening for nitrogen and oxygen vacancy codoped TiO2 with a large bandgap narrowing [J]. J. Mater. Sci. Technol., 2022, 122(0): 84-90. |
| [5] | Xiaoru Liu, Hao Feng, Jing Wang, Xuefei Chen, Ping Jiang, Fuping Yuan, Huabing Li, En Ma, Xiaolei Wu. Mechanical property comparisons between CrCoNi medium-entropy alloy and 316 stainless steels [J]. J. Mater. Sci. Technol., 2022, 108(0): 256-269. |
| [6] | Hao-Xuan Liu, Hai-Le Yan, Nan Jia, Shuai Tang, Daoyong Cong, Bo Yang, Zongbin Li, Yudong Zhang, Claude Esling, Xiang Zhao, LiangZuo . Machine-learning-assisted discovery of empirical rule for inherent brittleness of full Heusler alloys [J]. J. Mater. Sci. Technol., 2022, 131(0): 1-13. |
| [7] | Fu-Zhi Dai, Bo Wen, Yinjie Sun, Yixiao Ren, Huimin Xiang, Yanchun Zhou. Grain boundary segregation induced strong UHTCs at elevated temperatures: A universal mechanism from conventional UHTCs to high entropy UHTCs [J]. J. Mater. Sci. Technol., 2022, 123(0): 26-33. |
| [8] | Jia Li, Baobin Xie, Quanfeng He, Bin Liu, Xin Zeng, Peter K. Liaw, Qihong Fang, Yong Yang, Yong Liu. Chemical-element-distribution-mediated deformation partitioning and its control mechanical behavior in high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 120(0): 99-107. |
| [9] | Lei Jiang, Changsheng Wang, Huadong Fu, Jie Shen, Zhihao Zhang, Jianxin Xie. Discovery of aluminum alloys with ultra-strength and high-toughness via a property-oriented design strategy [J]. J. Mater. Sci. Technol., 2022, 98(0): 33-43. |
| [10] | Yupeng Diao, Luchun Yan, Kewei Gao. A strategy assisted machine learning to process multi-objective optimization for improving mechanical properties of carbon steels [J]. J. Mater. Sci. Technol., 2022, 109(0): 86-93. |
| [11] | Xiaoxiao Geng, Xinping Mao, Hong-Hui Wu, Shuize Wang, Weihua Xue, Guanzhen Zhang, Asad Ullah, Hao Wang. A hybrid machine learning model for predicting continuous cooling transformation diagrams in welding heat-affected zone of low alloy steels [J]. J. Mater. Sci. Technol., 2022, 107(0): 207-215. |
| [12] | Joung Sik Suh, Byeong-Chan Suh, Sang Eun Lee, Jun Ho Bae, Byoung Gi Moon. Quantitative analysis of mechanical properties associated with aging treatment and microstructure in Mg-Al-Zn alloys through machine learning [J]. J. Mater. Sci. Technol., 2022, 107(0): 52-63. |
| [13] | Z. Li, W.T. Nash, S.P. O'Brien, Y. Qiu, R.K. Gupta, N. Birbilis. cardiGAN: A generative adversarial network model for design and discovery of multi principal element alloys [J]. J. Mater. Sci. Technol., 2022, 125(0): 81-96. |
| [14] | Xin Li, Guangcun Shan, C.H. Shek. Machine learning prediction of magnetic properties of Fe-based metallic glasses considering glass forming ability [J]. J. Mater. Sci. Technol., 2022, 103(0): 113-120. |
| [15] | Wang Yi, Guangchen Liu, Zhao Lu, Jianbao Gao, Lijun Zhang. Efficient alloy design of Sr-modified A356 alloys driven by computational thermodynamics and machine learning [J]. J. Mater. Sci. Technol., 2022, 112(0): 277-290. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
