J. Mater. Sci. Technol. ›› 2023, Vol. 132: 223-251.DOI: 10.1016/j.jmst.2022.06.013
• Review Article • Previous Articles Next Articles
Yujie Rena,1, Xin Wanga,1, Jiaxin Maa, Qi Zhenga,c,*(
), Lianjun Wanga,c,*(
), Wan Jianga,b,c
Received:2022-04-30
Revised:2022-06-03
Accepted:2022-06-10
Published:2023-01-01
Online:2022-07-06
Contact:
Qi Zheng,Lianjun Wang
About author:wanglj@dhu.edu.cn (L.Wang).1 These authors contributed equally to this work.
Yujie Ren, Xin Wang, Jiaxin Ma, Qi Zheng, Lianjun Wang, Wan Jiang. Metal-organic framework-derived carbon-based composites for electromagnetic wave absorption: Dimension design and morphology regulation[J]. J. Mater. Sci. Technol., 2023, 132: 223-251.
Fig. 1. Schematic illustration of micro/nanoarchitecture design of carbon-based composites derived from MOFs for MAMs. Reproduced with permission from Refs. [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30].
Fig. 2. Microwave absorption mechanism of MOF-derived composites, including (a) polarization loss, reproduced with permission from Refs. [22,61,62], (b) magnetic loss, reproduced with permission from Refs. [63], [64], [65], (c) conduction loss, reproduced with permission from Refs. [22,66], (d) multi-scattering and reflection, reproduced with permission from Refs. [61,67].
Fig. 3. (a) Fabrication process of UiO-66 and PCN-125 derivatives. (b) Schematic illustration of microwave absorption mechanisms, (c, d) SEM and HRTEM images, (e) 3D RL maps, (f) 2D RL projection mappings of TiO2/ZrTiO4/C composites. Reproduced with permission from Ref. [85].
Fig. 4. (a) Synthetic routes of octahedral Cu9S5/C composites and pure carbon. (b) SEM and (c) TEM images of Cu9S5/C. Simulated electric field distribution in (d1) carbon skeleton, (d2) Cu9S5/C composites, and magnetic field distribution in (d3) carbon skeleton, (d4) Cu9S5/C composites. (e) 3D RL diagrams and (f) the corresponding projection diagrams of Cu9S5/C composites. Reproduced with permission from Ref. [62].
Fig. 5. Synthesis process of (a) ZIF-67, (b) ZIF-67/PVP, (c) ZIF-67@PVP-PDA, and (d) CNC NPs. (e) RL curves of CNC. (f) TEM and (g) HRTEM images of CNC. (h) Schematic diagram of microwave absorption mechanisms of CNC. Reproduced with permission from Ref. [88].
Fig. 6. (a) Schematic illustration of the synthesis of Prussian blue analogue (PBA) derivates in different heat treatment atmospheres. SEM images of (b) CoFe/C and (c) NiFe/C. (d, e) RL curves of CoFe/C and NiFe/C corresponding to thickness. (f) Microwave absorption mechanism of as-prepared composites. Reproduced with permission from Ref. [91].
Fig. 7. (a) Illustration of the formation of porous Co/ZrO2/C octahedra. (b) SEM and (c) TEM images of Co/ZrO2/C composites. (d) SAED pattern of Co/ZrO2/C octahedra. (e) 3D RL maps and (f) the corresponding platforms of Co/ZrO2/C composites. (g) Schematic diagram of EMW attenuation mechanism. Reproduced with permission from Ref. [26].
Fig. 8. (a) Schematic diagram of the synthesis process of CoNi@NG-NCPs. (b-d) SEM, TEM images, and SAED pattern of CoNi@NG-NCPs. (e) 3D RL data dependent on the frequency and the thickness of the absorbers for CoNi@NG-NCP. Reproduced with permission from Ref. [95].
Fig. 9. (a) Illustration for the formation of the Co/N PC composites. (b) Mechanism of the formation of ZIF-67@PDA. (c-f) TEM images of T1-700, T2-700, T3-700, and T4-700. (h) Schematic of the EMW attenuation mechanisms of Co/N PC composites. (i) RL curves of T3-700 at thickness regions of 2.0-3.0 mm. Reproduced with permission from Ref. [28].
Fig. 10. (a) Schematic overview of NiCo@C microboxes preparation process. (b) TEM images of (b1) NiCo@C-0, (b2) NiCo@C-1, (b3) NiCo@C-2, and (b4) NiCo@C-3. (c) 3D RL representations of NiCo@C-2. (d) Microwave absorption mechanisms of NiCo@C microboxes. Reproduced with permission from Ref. [99].
Fig. 11. (a) Schematic illustration for the synthesis of the hollow cavity in ZIF-67@SiO2. (b, c) SEM images of ZIF-67 and ZIF-67@SiO2. (d1, e1) SEM and (d2, e2) TEM images of ZIF-67 and ZIF-67@SiO2 after high-temperature pyrolysis. (f) Microwave absorption mechanisms of ZIF-67@SiO2-700. Reproduced with permission from Ref. [100].
Fig. 12. (a) Schematic illustrations of the synthesis of HBN-Co/C composites. (b, c) SEM images of HBN-Co/C. (d) RL curves of the HBN-Co/C composites with various thicknesses. (e) Multiple reflection and consumption of EMWs in pores or voids in the HBN-Co/C composites. Reproduced with permission from Ref. [105].
Fig. 13. (a) Schematic representation of the facile synthesis route of the FeCoNi@C nanocomposites. (b) SEM and (c) TEM images of FeCoNi@C nanocomposites. (d) RL curves of FeCoNi-MOF-700. (e) Schematic illustration of the possible microwave absorption mechanisms of FeCoNi@C nanocomposites. Reproduced with permission from Refs. [108].
Fig. 14. (a) Synthetic scheme of the preparation of Co@NPC, Co@NPC@TiO2, and C-ZIF-67@TiO2. 3D RL curves for (b) Co@NPC@TiO2, (c) C-ZIF-67@TiO2. Reproduced with permission from Ref. [118].
Fig. 15. (a) Schematic illustration of the preparation of yolk-shelled Co3O4/NC@CoNix (x = 1, 1.5, 2) composites. (b) Calculated RL curves, (c) 3D RL map, (d) corresponding contour maps, and (e) contour map of Z values of Co3O4/NC@CoNi1.5. Reproduced with permission from Ref. [119].
Fig. 16. (a) Synthetic process of NiCo alloy/carbon nanorod@CNTs from NiCo-MOF-74 nanorods. (b-d) Low-magnification SEM, low-magnification TEM, and high-magnification TEM images of NiCo alloy/carbon nanorods@CNT composites. (e) Schematic diagram of the microwave absorption mechanism. Reproduced with permission from Ref. [123].
Fig. 17. (a) Schematic diagram of the synthetic process of FMCFs composites. (b) SEM and (c) TEM images of FMCFs composites. (d, e) EMW attenuation mechanism diagram of carbon matrix composites. Reproduced with permission from Ref. [40].
Fig. 18. (a) Schematic diagram of 3D hierarchical Mo2N@CoFe@C/CNT composites constructed by the fast MOF-based ligand exchange strategy. (b-d) TEM images of Mo2N@CoFe@C/CNT composites. (e) 3D plots of reflection loss of Mo2N@CoFe@C/CNT. (f) The microwave absorption mechanism of 3D hierarchical Mo2N@CoFe@C/CNT composites. Reproduced with permission from Ref. [27].
Fig. 19. (a) Solvothermal synthesis of Co-MOF nanosheets and subsequent pyrolysis to produce nanolayered Co@C hybrids. (b, c) SEM images of the Co@C hybrids. (d) The TEM images of the Co@C hybrids. (e) Schematic diagram of EMW absorption mechanism. Reproduced with permission from Ref. [21].
Fig. 20. (a) Schematic diagram illustrating the preparation process of hierarchically porous Fe-Co/NC/rGO. (b, c) SEM images of Fe-Co/NC/rGO. (d) Schematic diagram of microwave absorption mechanism of Fe-Co/NC/rGO. Reproduced with permission from Ref. [128].
Fig. 21. (a) Schematic diagram for the fabrication process of the MXene/Co-CZIF and MXene/Ni-CZIF. (b, c) SEM images of MXene. (d, e) SEM images of MXene@Co-CZIF. (f, g) SEM images of MXene@Ni-CZIF. (h, i) RLmin values of MXene@Co-CZIF 50% and MXene@Ni-CZIF 50%. (j) Schematic diagram of the possible microwave absorption mechanism of MXene@Co-CZIF and MXene@Ni-CZIF. Reproduced with permission from Ref. [130].
Fig. 22. (a, b) Schematic synthesis process and self-assembly of 2D iron-quinoid MOF. (c-f) SEM images of samples at different calcination temperatures. (g) 3D colormap of RL of iron-quinoid MOF calcined at 160 °C. (h) RL and normalized impedance minus unity at different thicknesses. (i) Schematic microwave absorbing mechanism of iron-quinoid MOF. Reproduced with permission from Ref. [23].
Fig. 23. (a) RL curves and (b) schematic diagram of the proposed microwave absorption mechanism of CNT/FeCoNi@C sponges. Reproduced with permission from Ref. [133].
Fig. 24. (a) Schematic illustration of a preparation process and (b) microwave absorption mechanism for CoFe@C composites with rod-like, nest-like, and sheet-like structures. (c-e) 3D RL curves of CoFe@C composites. Reproduced with permission from Ref. [141].
Fig. 25. (a) Synthetic process of Co@NC composites. Electron holography images and corresponding magnetic field distribution for (b-e) Co@NCNT-c, (f, g) Co@NCNT-d, (h, i) Co@NCNT-o. (j) Schematic diagram of the microwave absorption mechanism in the Co@NCNT-o composites. (k-m) RL curves of Co@NCNT-c, Co@NCNT-d, Co@NCNT-o. Reproduced with permission from Ref. [142].
Fig. 26. (a) Synthetic process of CoNC/CNTs composites. (b) Schematic diagram for the design of cactus-inspired 1D-2D mixed-dimensional CoNC/CNTs for MAMs. (c) Simulated RL patterns of CoNC/CNTs composites. (d, e) SEM images of CoNC/CNT-3/1. Reproduced with permission from Ref. [29].
Fig. 27. (a) Schematic synthetic route of HCF@NC/Co. (b, c) SEM images of HLF@ZIF-67. (d) SEM and (e)TEM images of HCF@NC/Co. Insets show the size distribution of Co NPs. (f) RL curves and (g) 2D RL projection mappings of HCF@NC/Co. (h) Schematic diagram of the EMW absorption mechanism for HCF@NC/Co. Reproduced with permission from Ref. [144].
Fig. 28. (a) Schematic illustrations of the synthesis of MnO@NPC and MnO2@NPC. (b, c) SEM images of MnO@NPC-800 and MnO2@NPC-800. (d) TEM and (e) HRTEM images of the MnO2@NPC-800 sample. (f) RL curves of MnO2@NPC-800. (g) Schematic diagram of the EMW absorption mechanisms of MnO@NPC and MnO2@NPC composites. Reproduced with permission from Ref. [145].
| Dimension | Morphology | Composition | RL (dB) | EAB (GHz) | Thick-ness (mm) | Filling ratio (wt.%) | Refs. |
|---|---|---|---|---|---|---|---|
| 0D Structures | Polyhedra | N-doped porous carbon | -39.7 | 4.3 | 4 | 50 | [ |
| CoO/NPC | -57.5 | 4.7 | 1.55 | 50 | [ | ||
| ZrO2/C | -58.7 | 5.5 (1.7 mm) | 1.5 | 50 | [ | ||
| TiO2/ZrTiO4/C | -67.8 | 5.90 (2.7 mm) | 2,16 | 35 | [ | ||
| Mo2C/C | -49.19 | 4.56 (1.7 mm) | 2.6 | 20 | [ | ||
| Cu9S5/C | -62.3 | 4.7 (1.6 mm) | 1.3 | 45 | [ | ||
| Co/NC | -56.92 | 5.75 (1.8 mm) | 2.1 | 27 | [ | ||
| Co/N/C | -27.2 | 5.97 (1.88 mm) | 6.68 | 15 | [ | ||
| Fe3O4@NPC | -65.5 | 4.5 | 3 | 40 | [ | ||
| Co2Ni1/C | -52 | 4.5 | 3 | 5 | [ | ||
| CoFe/C | -44.6 | 5.5 | 2.15 | 40 | [ | ||
| NiFe/C | -41 | 4.8 | 1.65 | 40 | |||
| CoO/Co/C | -66.7 | 5.1 (1.8 mm) | 3.3 | 25 | [ | ||
| Co/C | -30.31 | 4.93 | 3 | 25 | [ | ||
| Fe-N/C | -30.98 | 5.04 | 1.7 | 33.3 | [ | ||
| Co/ZrO2/C | -57.2 | 11.9 | 3.3 | 50 | [ | ||
| Hollow polyhedron | CoNi@NG-NCPs | -47.79 | 4.54 (2.5 mm) | 3 | 35 | [ | |
| CoNi/C | -61.02 | 5.2 | 2 | 10 | [ | ||
| Co@NCNs | -60.6 | 5.1 (1.9 mm) | 2.4 | 10 | [ | ||
| Co-C@C | -58.1 | 5.7 (2 mm) | 2.5 | 25 | [ | ||
| Co/N PC | -53.24 | 5.93 | 2.4 | 15 | [ | ||
| Hollow cubes | Co/N/C@MnO2 | -58.9 | 5.5 | 3.7 | 15 | [ | |
| NiCo@C | -68.4 | 5.8 (2 mm) | 2.14 | 40 | [ | ||
| HPCMCs | -60.7 | 3.9 (1.5 mm) | 3.2 | 30 | [ | ||
| CoFe@C | -44.1 | 5.2 (2.3 mm) | 5.8 | 40 | [ | ||
| Gd2O3/MnO/C | -64.4 | 6.6 (2.09 mm) | 1.44 | 50 | [ | ||
| Hollow sphere | Co/C | -66.5 | 4.4 (2 mm) | 1.53 | 30 | [ | |
| Co/C@V2O3 | -40.1 | 4.64 | 1.5 | 50 | [ | ||
| HBN-Co/C | -42.3 | 5.1 (1.7 mm) | 1.9 | - | [ | ||
| Ni/C | -57.25 | 5.1 | 1.8 | 30 | [ | ||
| CoNi@C | -44.8 | 4.0 (2.4 mm) | 3.2 | 30 | [ | ||
| FeCoNi@C | -69.03 | 8.08 | 2.47 | 38 | [ | ||
| Core-shell nanostructures | Ni@C@ZnO | -55.8 | 4.1 | 2.5 | 25 | [ | |
| Ni@C | -59.5 | 4.7 | 4.5 | 25 | [ | ||
| CF@C/Co | -71.95 | 6.25 (1.71 mm) | 1.78 | 20 | [ | ||
| Fe3O4@Zn-N-Carbon | -61.9 | 11.5 | 2.5 | 83 | [ | ||
| Yolk-shell nanostructures | C-ZIF-67@TiO2 | -51.7 | 4.2 | 1.65 | 50 | [ | |
| Co3O4/NC@CoNix | -71.15 | 5 | 1.71 | 50 | [ | ||
| Co/NPC@Void@CI | -49.2 | 6.72 | 2.2 | 40 | [ | ||
| Co-C/Void/Co9S8 | -54.02 | 8.2 | 2.2 | 25 | [ | ||
| 1D Structures | Nanorods | Co/C | -47.6 | 5.11 | 2.0 | 33 | [ |
| Fe3O4/ Fe3C/ Fe-NPs/NPC | -52.9 | 4.64 | 3.07 | 40 | [ | ||
| NiCo alloy/carbon nanorods@CNTs | -58.8 | 6.5 | 2.6 | 5 | [ | ||
| Nanofibers | FMCFs | -39.2 | 4.44 | 1.4 | 40 | [ | |
| TCNFs/Co/NPC | -54.1 | 6.2 | 2 | 8 | [ | ||
| Nanowires | MOFs/SiC NWs | -47 | 5.92 (2 mm) | 3 | 10 | [ | |
| Nanospindle | Fe/C | -27.1 | 1.6 | 4.32 | - | [ | |
| Fe/Fe3C/C | -14.4 | 4.5 | 2 | - | |||
| Tubes on rods | Mo2N@CoFe@C/CNT | -53.5 | 5.0 | 2 | 20 | [ | |
| 2D Structures | Nanosheets(Self-templating) | Co@C | -49.76 | 5.44 | 1.76 | 30 | [ |
| Co@SC@MNC | -72.3 | 6 | 2.6 | 20 | [ | ||
| CoNi@C | -43.7 | 5.7 (1.8 mm) | 1.7 | 20 | [ | ||
| Nanosheets(External-templating) | CoNi@NC/rGO | -68 | 6.7 | 2 | 25 | [ | |
| rGO-CoFe@C | -36.08 | 5.17 (3.5 mm) | 3 | 10 | [ | ||
| Fe/Co/NC/rGO | -43.26 | 9.29 | 2.5 | 25 | [ | ||
| Fe&TiO2@C | -51.8 | 6.5 (1.6 mm) | 3 | 40 | [ | ||
| MXene/Co-CZIF | -60.09 | 9.3 | 2.7 | 50 | [ | ||
| MXene/Ni-CZIF | -64.11 | 4.56 | 3.0 | 50 | |||
| Nanosheets (Intrinsic 2D MOF) | Iron-Quinoid MOF | -73.5 | 6.1 | 3.3 | 30 | [ | |
| 3D Structures | Sponge | CNT/FeCoNi@C | -51.7 | 6.8 (1 mm) | 3 | 30 | [ |
| Foam | hollow Ni/C microsphere@GF | -63 | 5.4 (2 mm) | 1.76 | 15 | [ | |
| Tree blossom | Ni/NC/C | -63.1 | 4.16 | 2 | 16 | [ | |
| Flower structure | Ni/C | -52.4 | 5 | 1.6 | 30 | [ | |
| ML-Ni/C | -65.33 | 7.6 (2.8 mm) | 2.4 | 20 | [ | ||
| CNF@C-Ni | -49.77 | 5.44 | 2.2 | 5 | [ | ||
| Jujube pit-shaped | C/Co | -41 | 5.6 (2 mm) | 2.8 | 40 | [ | |
| Nested | CoFe@C | -61.8 | 9.2 | 2.8 | 10 | [ | |
| Honeycomb | Co/C | -50.7 | 4.6 | 2.9 | 10 | [ | |
| Mixed-dimensional Structures | / | ZnO@MWCNTs | -47.4 | 3.7 (1.5 mm) | 2.7 | 20 | [ |
| Co@NC | -53 | 6.2 (2 mm) | 1.8 | - | [ | ||
| Co9S8/CNTs/MoS2 | -35.4 | 8.4 (3.8 mm) | 4 | 9 | [ | ||
| Ni3ZnC0.7/CNT/NPC | -66.6 | 7.76 (2.18 mm) | 2.58 | 30 | [ | ||
| CoNC/CNTs | -44.6 | 1.7 | 4.7 | 15 | [ | ||
| HCF@NC/Co | -50.14 | 7.36 (2.7 mm) | 2.25 | 14 | [ | ||
| Co-NC@CF | -50.1 | 4.82 | 1.6 | 5 | [ | ||
| MnO2@NPC | -63.21 | 4.04 | 2.05 | 50 | [ |
Table 1. Summary of EMW absorption performance of MOF-derived composites based on dimension and morphology.
| Dimension | Morphology | Composition | RL (dB) | EAB (GHz) | Thick-ness (mm) | Filling ratio (wt.%) | Refs. |
|---|---|---|---|---|---|---|---|
| 0D Structures | Polyhedra | N-doped porous carbon | -39.7 | 4.3 | 4 | 50 | [ |
| CoO/NPC | -57.5 | 4.7 | 1.55 | 50 | [ | ||
| ZrO2/C | -58.7 | 5.5 (1.7 mm) | 1.5 | 50 | [ | ||
| TiO2/ZrTiO4/C | -67.8 | 5.90 (2.7 mm) | 2,16 | 35 | [ | ||
| Mo2C/C | -49.19 | 4.56 (1.7 mm) | 2.6 | 20 | [ | ||
| Cu9S5/C | -62.3 | 4.7 (1.6 mm) | 1.3 | 45 | [ | ||
| Co/NC | -56.92 | 5.75 (1.8 mm) | 2.1 | 27 | [ | ||
| Co/N/C | -27.2 | 5.97 (1.88 mm) | 6.68 | 15 | [ | ||
| Fe3O4@NPC | -65.5 | 4.5 | 3 | 40 | [ | ||
| Co2Ni1/C | -52 | 4.5 | 3 | 5 | [ | ||
| CoFe/C | -44.6 | 5.5 | 2.15 | 40 | [ | ||
| NiFe/C | -41 | 4.8 | 1.65 | 40 | |||
| CoO/Co/C | -66.7 | 5.1 (1.8 mm) | 3.3 | 25 | [ | ||
| Co/C | -30.31 | 4.93 | 3 | 25 | [ | ||
| Fe-N/C | -30.98 | 5.04 | 1.7 | 33.3 | [ | ||
| Co/ZrO2/C | -57.2 | 11.9 | 3.3 | 50 | [ | ||
| Hollow polyhedron | CoNi@NG-NCPs | -47.79 | 4.54 (2.5 mm) | 3 | 35 | [ | |
| CoNi/C | -61.02 | 5.2 | 2 | 10 | [ | ||
| Co@NCNs | -60.6 | 5.1 (1.9 mm) | 2.4 | 10 | [ | ||
| Co-C@C | -58.1 | 5.7 (2 mm) | 2.5 | 25 | [ | ||
| Co/N PC | -53.24 | 5.93 | 2.4 | 15 | [ | ||
| Hollow cubes | Co/N/C@MnO2 | -58.9 | 5.5 | 3.7 | 15 | [ | |
| NiCo@C | -68.4 | 5.8 (2 mm) | 2.14 | 40 | [ | ||
| HPCMCs | -60.7 | 3.9 (1.5 mm) | 3.2 | 30 | [ | ||
| CoFe@C | -44.1 | 5.2 (2.3 mm) | 5.8 | 40 | [ | ||
| Gd2O3/MnO/C | -64.4 | 6.6 (2.09 mm) | 1.44 | 50 | [ | ||
| Hollow sphere | Co/C | -66.5 | 4.4 (2 mm) | 1.53 | 30 | [ | |
| Co/C@V2O3 | -40.1 | 4.64 | 1.5 | 50 | [ | ||
| HBN-Co/C | -42.3 | 5.1 (1.7 mm) | 1.9 | - | [ | ||
| Ni/C | -57.25 | 5.1 | 1.8 | 30 | [ | ||
| CoNi@C | -44.8 | 4.0 (2.4 mm) | 3.2 | 30 | [ | ||
| FeCoNi@C | -69.03 | 8.08 | 2.47 | 38 | [ | ||
| Core-shell nanostructures | Ni@C@ZnO | -55.8 | 4.1 | 2.5 | 25 | [ | |
| Ni@C | -59.5 | 4.7 | 4.5 | 25 | [ | ||
| CF@C/Co | -71.95 | 6.25 (1.71 mm) | 1.78 | 20 | [ | ||
| Fe3O4@Zn-N-Carbon | -61.9 | 11.5 | 2.5 | 83 | [ | ||
| Yolk-shell nanostructures | C-ZIF-67@TiO2 | -51.7 | 4.2 | 1.65 | 50 | [ | |
| Co3O4/NC@CoNix | -71.15 | 5 | 1.71 | 50 | [ | ||
| Co/NPC@Void@CI | -49.2 | 6.72 | 2.2 | 40 | [ | ||
| Co-C/Void/Co9S8 | -54.02 | 8.2 | 2.2 | 25 | [ | ||
| 1D Structures | Nanorods | Co/C | -47.6 | 5.11 | 2.0 | 33 | [ |
| Fe3O4/ Fe3C/ Fe-NPs/NPC | -52.9 | 4.64 | 3.07 | 40 | [ | ||
| NiCo alloy/carbon nanorods@CNTs | -58.8 | 6.5 | 2.6 | 5 | [ | ||
| Nanofibers | FMCFs | -39.2 | 4.44 | 1.4 | 40 | [ | |
| TCNFs/Co/NPC | -54.1 | 6.2 | 2 | 8 | [ | ||
| Nanowires | MOFs/SiC NWs | -47 | 5.92 (2 mm) | 3 | 10 | [ | |
| Nanospindle | Fe/C | -27.1 | 1.6 | 4.32 | - | [ | |
| Fe/Fe3C/C | -14.4 | 4.5 | 2 | - | |||
| Tubes on rods | Mo2N@CoFe@C/CNT | -53.5 | 5.0 | 2 | 20 | [ | |
| 2D Structures | Nanosheets(Self-templating) | Co@C | -49.76 | 5.44 | 1.76 | 30 | [ |
| Co@SC@MNC | -72.3 | 6 | 2.6 | 20 | [ | ||
| CoNi@C | -43.7 | 5.7 (1.8 mm) | 1.7 | 20 | [ | ||
| Nanosheets(External-templating) | CoNi@NC/rGO | -68 | 6.7 | 2 | 25 | [ | |
| rGO-CoFe@C | -36.08 | 5.17 (3.5 mm) | 3 | 10 | [ | ||
| Fe/Co/NC/rGO | -43.26 | 9.29 | 2.5 | 25 | [ | ||
| Fe&TiO2@C | -51.8 | 6.5 (1.6 mm) | 3 | 40 | [ | ||
| MXene/Co-CZIF | -60.09 | 9.3 | 2.7 | 50 | [ | ||
| MXene/Ni-CZIF | -64.11 | 4.56 | 3.0 | 50 | |||
| Nanosheets (Intrinsic 2D MOF) | Iron-Quinoid MOF | -73.5 | 6.1 | 3.3 | 30 | [ | |
| 3D Structures | Sponge | CNT/FeCoNi@C | -51.7 | 6.8 (1 mm) | 3 | 30 | [ |
| Foam | hollow Ni/C microsphere@GF | -63 | 5.4 (2 mm) | 1.76 | 15 | [ | |
| Tree blossom | Ni/NC/C | -63.1 | 4.16 | 2 | 16 | [ | |
| Flower structure | Ni/C | -52.4 | 5 | 1.6 | 30 | [ | |
| ML-Ni/C | -65.33 | 7.6 (2.8 mm) | 2.4 | 20 | [ | ||
| CNF@C-Ni | -49.77 | 5.44 | 2.2 | 5 | [ | ||
| Jujube pit-shaped | C/Co | -41 | 5.6 (2 mm) | 2.8 | 40 | [ | |
| Nested | CoFe@C | -61.8 | 9.2 | 2.8 | 10 | [ | |
| Honeycomb | Co/C | -50.7 | 4.6 | 2.9 | 10 | [ | |
| Mixed-dimensional Structures | / | ZnO@MWCNTs | -47.4 | 3.7 (1.5 mm) | 2.7 | 20 | [ |
| Co@NC | -53 | 6.2 (2 mm) | 1.8 | - | [ | ||
| Co9S8/CNTs/MoS2 | -35.4 | 8.4 (3.8 mm) | 4 | 9 | [ | ||
| Ni3ZnC0.7/CNT/NPC | -66.6 | 7.76 (2.18 mm) | 2.58 | 30 | [ | ||
| CoNC/CNTs | -44.6 | 1.7 | 4.7 | 15 | [ | ||
| HCF@NC/Co | -50.14 | 7.36 (2.7 mm) | 2.25 | 14 | [ | ||
| Co-NC@CF | -50.1 | 4.82 | 1.6 | 5 | [ | ||
| MnO2@NPC | -63.21 | 4.04 | 2.05 | 50 | [ |
| [1] |
T.Q. Hou, Z.R. Jia, A.L. Feng, Z.H. Zhou, X.H. Liu, H.L. Lv, G.L. Wu, J. Mater. Sci. Technol. 68 (2021) 61-69.
DOI URL |
| [2] | Y.M. Liu, E. Fan, R.H. Hou, P. Zhang, S.J. Zhang, G.S. Shao, J. Mater. Chem. C 9 (2021) 14866-14875. |
| [3] | Z.L. Ma, X.X. Xiang, L. Shao, Y.L. Zhang, J.W. Gu, Angew. Chem. Int. Ed. 61 (2022) e202200705. |
| [4] |
X. Meng, L. He, Y.Q. Liu, Y.S. Yu, W.W. Yang, Carbon 194 (2022) 207-219.
DOI URL |
| [5] |
R.J. Yang, Y.Y. Fan, R.Q. Ye, Y.X. Tang, X.H. Cao, Z.Y. Yin, Z.Y. Zeng, Adv. Mater. 33 (2021) 2004862.
DOI URL |
| [6] |
M. Yuan, M. Zhou, H.Q. Fu, Compos. Part B-Eng. 224 (2021) 109178.
DOI URL |
| [7] |
Q.Q. Chen, D.X. Li, X.Q. Liao, Z.H. Yang, D.C. Jia, Y. Zhou, R. Riedel, ACS Appl. Mater. Interfaces 13 (2021) 34889-34898.
DOI URL |
| [8] |
Y.L. Zhang, J.W. Gu, Nano-Micro Lett. 14 (2022) 89.
DOI URL PMID |
| [9] |
B. Zhao, Y. Li, H.Y. Ji, P.W. Bai, S. Wang, B.B. Fan, X.Q. Guo, R. Zhang, Carbon 176 (2021) 411-420.
DOI URL |
| [10] | D.H. Ding, J. Wang, G.Q. Xiao, Z.P. Li, B. Bai, J.R. Ren, G.P. He, Int. J. Appl.Ce- ram. Technol. 17 (2020) 734-744. |
| [11] |
X.F. Zhou, Z.R. Jia, A.L. Feng, X.X. Wang, J.J. Liu, M. Zhang, H.J. Cao, G.L. Wu, Carbon 152 (2019) 827-836.
DOI URL |
| [12] | L. Wang, Z.L. Ma, Y.L. Zhang, L.X. Chen, D.P. Cao, J.W. Gu, SusMat 1 (2021) 413-431. |
| [13] | Y.L. Zhang, K.P. Ruan, J.W. Gu, Small 17 (2021) 2101951. |
| [14] | B.W. Deng, Z.C. Liu, F. Pan, Z. Xiang, X. Zhang, W. Lu, J. Mater. Chem. A 9 (2021) 3500-3510. |
| [15] | W.B. You, H. Bi, W. She, Y. Zhang, R.C. Che, Small 13 (2017) 1602779. |
| [16] |
Q. Li, Z. Zhang, L.P. Qi, Q.L. Liao, Z. Kang, Y. Zhang, Adv. Sci. 6 (2019) 1801057.
DOI URL |
| [17] | X.H. Li, W.B. You, R.X. Zhang, J.F. Fang, Q.W. Zeng, X. Li, C.Y. Xu, M. Wang, R. C. Che, Small 17 (2021) 2103351. |
| [18] |
P. Song, B. Liu, H. Qiu, X.T. Shi, D.P. Cao, J.W. Gu, Compos. Commun. 24 (2021) 100653.
DOI URL |
| [19] |
W. Feng, Y.M. Wang, Y.C. Zou, J.C. Chen, D.C. Jia, Y. Zhou, Chem. Eng. J. 342 (2018) 364-371.
DOI URL |
| [20] |
N. Yang, Z.X. Luo, G.R. Zhu, S.C. Chen, X.L. Wang, G. Wu, Y.Z. Wang, ACS Appl. Mater. Interfaces 11 (2019) 35987-35998.
DOI URL |
| [21] |
Y. Zhang, H.B. Zhang, X.Y. Wu, Z.M. Deng, E.G. Zhou, Z.Z. Yu, ACS Appl. Nano Mater. 2 (2019) 2325-2335.
DOI URL |
| [22] |
X.H. Li, L. Wang, X. Li, J. Zhang, M. Wang, R.C. Che, Carbon 172 (2021) 15-25.
DOI URL |
| [23] |
H.J. Wei, Y. Tian, Q. Chen, D. Estevez, P. Xu, H.X. Peng, F.X. Qin, Chem. Eng. J. 405 (2021) 126637.
DOI URL |
| [24] |
L. Wang, X.Y. Bai, B. Wen, Z. Du, Y. Lin, Compos. Part B-Eng. 166 (2019) 464-471.
DOI URL |
| [25] |
J. Yan, Y. Huang, Y.H. Yan, L. Ding, P.B. Liu, ACS Appl. Mater. Interfaces 11 (2019) 40781-40792.
DOI URL |
| [26] |
X. Zhang, J. Qiao, J. Zhao, D.M. Xu, F. Wang, C. Liu, Y.Y. Jiang, L.L. Wu, P.F. Cui, L. F. Lv, Q. Wang, W. Liu, Z. Wang, J.R. Liu, ACS Appl. Mater. Interfaces 11 (2019) 35959-35968.
DOI URL |
| [27] | C.Y. Xu, L. Wang, X. Li, X. Qian, Z.C. Wu, W.B. You, K. Pei, G. Qin, Q.W. Zeng, Z.Q. Yang, C. Jin, R.C. Che, Nano-Micro Lett. 13 (2021) 47. |
| [28] |
L.L. Xu, J.Q. Tao, X.F. Zhang, Z.J. Yao, A. Zavabeti, J.T. Zhou, Carbon 188 (2022) 34-44.
DOI URL |
| [29] |
X.Q. Xu, F.T. Ran, Z.M. Fan, H. Lai, Z.J. Cheng, T. Lv, L. Shao, Y.Y. Liu, ACS Appl. Mater. Interfaces 11 (2019) 13564-13573.
DOI URL |
| [30] |
N.N. Wu, D.M. Xu, Z. Wang, F.L. Wang, J.R. Liu, W. Liu, Q. Shao, H. Liu, Q. Gao, Z.H. Guo, Carbon 145 (2019) 433-444.
DOI URL |
| [31] |
H.L. Lv, Z.H. Yang, P.L. Wang, G.B. Ji, J.Z. Song, L.R. Zheng, H.B. Zeng, Z.C.J. Xu, Adv. Mater. 30 (2018) 1706343.
DOI URL |
| [32] |
Y.X. Han, K.P. Ruan, J.W. Gu, Nano Res. 15 (2022) 4747-4755.
DOI URL |
| [33] |
Z.H. Huang, J.Y. Cheng, H.B. Zhang, Y.F. Xiong, Z.X. Zhou, Q.B. Zheng, G.P. Zheng, D.Q. Zhang, M.S. Cao, J. Mater. Sci. Technol. 107 (2022) 155-164.
DOI URL |
| [34] |
F.Y. Wang, N. Wang, X.J. Han, D.W. Liu, Y.H. Wang, L.R. Cui, P. Xu, Y.C. Du, Carbon 145 (2019) 701-711.
DOI URL |
| [35] |
X.F. Zhou, Z.R. Jia, X.X. Zhang, B.B. Wang, W. Wu, X.H. Liu, B.H. Xu, G.L. Wu, J. Mater. Sci. Technol. 87 (2021) 120-132.
DOI URL |
| [36] |
B.L. Wang, Q. Wu, Y.G. Fu, T. Liu, J. Mater. Sci. Technol. 86 (2021) 91-109.
DOI URL |
| [37] |
Y.Q. Wang, H.G. Wang, J.H. Ye, L.Y. Shi, X. Feng, Chem. Eng. J. 383 (2020) 123096.
DOI URL |
| [38] |
Z.Z. Guo, P.G. Ren, Z.P. Zhang, Z. Dai, Z.X. Lu, Y.L. Jin, F. Ren, J. Mater. Sci. Technol. 102 (2022) 123-131.
DOI URL |
| [39] |
X.Q. Xu, F.T. Ran, Z.M. Fan, Z.J. Cheng, T. Lv, L. Shao, Y.Y. Liu, ACS Appl. Mater. Interfaces 12 (2020) 17870-17880.
DOI URL |
| [40] |
J.B. Chen, J. Zheng, F. Wang, Q.Q. Huang, G.B. Ji, Carbon 174 (2021) 509-517.
DOI URL |
| [41] |
S. Dong, X.H. Zhang, X.T. Li, J.M. Chen, P. Hu, J.C. Han, Chem. Eng. J. 392 (2020) 123817.
DOI URL |
| [42] | F.B. Meng, H.G. Wang, F. Huang, Y.F. Guo, Z.Y. Wang, D. Hui, Z.W. Zhou, Com- pos. Part B. Eng. 137 (2018) 260-277. |
| [43] |
J.B. Chen, J. Zheng, Q.Q. Huang, G.H. Wang, G.B. Ji, J. Mater. Sci. Technol. 94 (2021) 239-246.
DOI URL |
| [44] | K. Hemmer, M. Cokoja, R.A. Fischer, ChemCatChem 13 (2021) 1683-1691. |
| [45] |
Z. Chen, M.R. Mian, S.J. Lee, H. Chen, X. Zhang, K.O. Kirlikovali, S. Shulda, P. Melix, A.S. Rosen, P.A. Parilla, T. Gennett, R.Q. Snurr, T. Islamoglu, T. Yildirim, O.K. Farha, J. Am. Chem. Soc. 143 (2021) 18838-18843.
DOI URL |
| [46] |
W.D. Fan, X.R. Zhang, Z.X. Kang, X.P. Liu, D.F. Sun, Coord. Chem. Rev. 443 (2021) 213968.
DOI URL |
| [47] | G.L. Yang, X.L. Jiang, H. Xu, B. Zhao, Small 17 (2021) 2005327. |
| [48] |
K. Jung, J. Kim, J. Choi, Compos. Part B-Eng. 187 (2020) 107867.
DOI URL |
| [49] |
B.Y. Guan, Y. Lu, Y. Wang, M.H. Wu, X.W. Lou, Adv. Funct. Mater. 28 (2018) 1706738.
DOI URL |
| [50] |
S. Gao, G. Zhang, Y. Wang, X. Han, Y. Huang, P. Liu, J. Mater. Sci. Technol. 88 (2021) 56-65.
DOI URL |
| [51] |
C.L. Zhang, H. Li, Q. Zhang, F.H. Cao, Y. Xie, B.R. Lu, W.D. Zhang, H.P. Cong, H. Li, Chem. Eng. J. 420 (2021) 127705.
DOI URL |
| [52] |
Q.W. Zeng, L. Wang, X. Li, W.B. You, J. Zhang, X.H. Liu, M. Wang, R.C. Che, Appl. Surf. Sci. 538 (2021) 148051.
DOI URL |
| [53] |
H.L. Xu, X.W. Yin, M. Zhu, M.H. Li, H. Zhang, H.J. Wei, L.T. Zhang, L.F. Cheng, Carbon 142 (2019) 346-353.
DOI URL |
| [54] |
Z.W. Zhang, Z.H. Cai, Z.Y. Wang, Y.L. Peng, L. Xia, S.P. Ma, Z.Z. Yin, Y. Huang, Nano-Micro Lett. 13 (2021) 56.
DOI URL |
| [55] | L. Wang, X. Li, X.F. Shi, M.Q. Huang, X.H. Li, Q.W. Zeng, R.C. Che, Nanoscale 13 (2021) 2136-2156. |
| [56] |
J.C. Shu, X.Y. Yang, X.R. Zhang, X.Y. Huang, M.S. Cao, L. Li, H.J. Yang, W.Q. Cao, Carbon 162 (2020) 157-171.
DOI URL |
| [57] |
Z.C. Wu, H.W. Cheng, C. Jin, B.T. Yang, C.Y. Xu, K. Pei, H.B. Zhang, Z.Q. Yang, R. C. Che, Adv. Mater. 34 (2022) 2107538.
DOI URL |
| [58] |
J.C. Shu, W.Q. Cao, M.S. Cao, Adv. Funct. Mater. 31 (2021) 2100470.
DOI URL |
| [59] | C.M. Watts, X. Liu, W.J. Padilla, Adv. Mater. 24 (2012) 98-120. |
| [60] |
R.W. Shu, J.B. Zhang, C.L. Guo, Y. Wu, Z.L. Wan, J.J. Shi, Y. Liu, M.D. Zheng, Chem. Eng. J. 384 (2020) 123266.
DOI URL |
| [61] | X.H. Huan, H.T. Wang, W.C. Deng, J.Q. Yan, K. Xu, H.B. Geng, X.D. Guo, X.L. Jia, J.S. Zhou, X.P. Yang, Small 18 (2022) 2105411. |
| [62] |
D.M. Xu, Y.F. Yang, K. Le, G.W. Wang, A.C. Ouyang, B. Li, W. Liu, L.L. Wu, Z. Wang, J.R. Liu, F.L. Wang, Chem. Eng. J. 417 (2021) 129350.
DOI URL |
| [63] | X. Zhang, X.C. Zhang, D.T. Wang, H.R. Yuan, S. Zhang, C.L. Zhu, X.T. Zhang, Y.J. Chen, J. Mater. Chem. C 7 (2019) 11868-11878. |
| [64] |
B.W. Deng, Z. Xiang, J. Xiong, Z.C. Liu, L.Z. Yu, W. Lu, Nano-Micro Lett. 12 (2020) 55.
DOI URL |
| [65] | L. Wang, M.Q. Huang, X. Qian, L.L. Liu, W.B. You, J. Zhang, M. Wang, R.C. Che, Small 17 (2021) 2100970. |
| [66] |
F. Zhang, S.Y. Yin, Y.F. Chen, Q. Zheng, L.J. Wang, W. Jiang, Chem. Eng. J. 433 (2022) 133586.
DOI URL |
| [67] |
S. Kang, S.Y. Qiao, Y.T. Cao, Z.M. Hu, J.R. Yu, Y. Wang, Adv. Electron. Mater. 7 (2021) 2100121.
DOI URL |
| [68] |
Y. Zhang, Y. Huang, T.F. Zhang, H.C. Chang, P.S. Xiao, H.H. Chen, Z.Y. Huang, Y.S. Chen, Adv. Mater. 27 (2015) 2049-2053.
DOI URL |
| [69] |
H.X. Zhang, B.B. Wang, A.L. Feng, N. Zhang, Z.R. Jia, Z.Y. Huang, X.H. Liu, G. L. Wu, Compos. Part B-Eng. 167 (2019) 690-699.
DOI URL |
| [70] |
W. Wang, H. Zhang, Y.Z. Zhao, J.N. Wang, H.T. Zhao, P.B. Li, J.N. Yun, Z.H. Deng, Z.Y. Zhang, J.X. Tian, J.X. Yan, W. Zhao, F.C. Zhang, Chem. Eng. J. 426 (2021) 131667.
DOI URL |
| [71] |
W.J. Duan, X.D. Li, Y. Wang, R. Qiang, C.H. Tian, N. Wang, X.J. Han, Y.C. Du, Appl. Surf. Sci. 427 (2018) 594-602.
DOI URL |
| [72] |
Q.T. Liu, X.F. Liu, H.B. Feng, H.C. Shui, R.H. Yu, Chem. Eng. J. 314 (2017) 320-327.
DOI URL |
| [73] |
Z. Xu, Y.C. Du, D.W. Liu, Y. Wang, W.J. Ma, Y. Wang, P. Xu, X.J. Han, ACS Appl. Mater. Interfaces 11 (2019) 4268-4277.
DOI URL |
| [74] |
B.H. Han, W.L. Chu, X.J. Han, P. Xu, D.W. Liu, L.R. Cui, Y.H. Wang, H.H. Zhao, Y. C. Du, Carbon 168 (2020) 404-414.
DOI URL |
| [75] |
P. Singh, V.K. Babbar, A. Razdan, R.K. Puri, T.C. Goel, J. Appl. Phys. 87 (20 0 0) 4362-4366.
DOI URL |
| [76] |
X.J. Zhang, G.S. Wang, W.Q. Cao, Y.Z. Wei, J.F. Liang, L. Guo, M.S. Cao, ACS Appl. Mater. Interfaces 6 (2014) 7471-7478.
DOI URL |
| [77] |
R.L. Wang, M. He, Y.M. Zhou, S.X. Nie, Y.J. Wang, W.Q. Liu, Q. He, W.T. Wu, X. H. Bu, X.M. Yang, Carbon 156 (2020) 378-388.
DOI URL |
| [78] |
A. Drmota, J. Koselj, M. Drofenik, A. Žnidaršič, J. Magn. Magn. Mater. 324 (2012) 1225-1229.
DOI URL |
| [79] |
Y.H. Wang, X.D. Li, X.J. Han, P. Xu, L.R. Cui, H.H. Zhao, D.W. Liu, F.Y. Wang, Y. C. Du, Chem. Eng. J. 387 (2020) 124159.
DOI URL |
| [80] |
W. Liu, S.J. Tan, Z.H. Yang, G.B. Ji, Carbon 138 (2018) 143-153.
DOI URL |
| [81] |
K. Yang, Y.H. Cui, L.Y. Wan, Q.Y. Zhang, B.L. Zhang, Carbon 190 (2022) 366-375.
DOI URL |
| [82] |
Q.L. Wu, H.H. Jin, W. Chen, S.Q. Huo, X. Chen, X.G. Su, H. Wang, J. Wang, Mater. Res. Express 5 (2018) 065602.
DOI URL |
| [83] | J.N. Ma, X.M. Zhang, W. Liu, G.B. Ji, J. Mater. Chem. C 4 (2016) 11419-11426. |
| [84] |
X. Zhang, J. Qiao, C. Liu, F.L. Wang, Y.Y. Jiang, P. Cui, Q. Wang, Z. Wang, L.L. Wu, J.R. Liu, Inorg. Chem. Front. 7 (2020) 385-393.
DOI URL |
| [85] |
J. Qiao, X. Zhang, C. Liu, L.F. Lyu, Y.F. Yang, Z. Wang, L.L. Wu, W. Liu, F.L. Wang, J.R. Liu, Nano-Micro Lett. 13 (2021) 75.
DOI URL |
| [86] | S.S. Dai, Y. Cheng, B. Quan, X.H. Liang, W. Liu, Z.H. Yang, G.B. Ji, Y.W. Du, Nanoscale 10 (2018) 6945-6953. |
| [87] | J.Q. Tao, L.L. Xu, L. Wan, J.S. Hou, P.S. Yi, P. Chen, J.T. Zhou, Z.J. Yao, Nanoscale 13 (2021) 12896-12909. |
| [88] |
Y.J. Liu, Z.J. Yao, J.T. Zhou, L.Q. Jin, B. Wei, X.X. He, Carbon 186 (2022) 574-588.
DOI URL |
| [89] |
Z. Xiang, Y.M. Song, J. Xiong, Z.B. Pan, X. Wang, L. Liu, R. Liu, H.W. Yang, W. Lu, Carbon 142 (2019) 20-31.
DOI URL |
| [90] |
Y.L. Wang, G.S. Wang, X.J. Zhang, C. Gao, J. Mater. Sci. Technol. 103 (2022) 34-41.
DOI URL |
| [91] |
X.H. Liang, G.H. Wang, W.H. Gu, G.B. Ji, Carbon 177 (2021) 97-106.
DOI URL |
| [92] |
R.W. Shu, W.J. Li, Y. Wu, J.B. Zhang, G.Y. Zhang, M.D. Zheng, Compos. Part B- Eng. 178 (2019) 107518.
DOI URL |
| [93] |
H.C. Wang, L. Xiang, W. Wei, J. An, J. He, C.H. Gong, Y.L. Hou, ACS Appl. Mater. Interfaces 9 (2017) 42102-42110.
DOI URL |
| [94] |
J.H. Yu, J.Y. Yu, T.P. Ying, X.G. Liu, X.F. Zhang, D.D. Han, J. Alloy. Compd. 838 (2020) 155629.
DOI URL |
| [95] |
X. Zhang, F. Yan, S. Zhang, H.R. Yuan, C.L. Zhu, X.T. Zhang, Y.J. Chen, ACS Appl. Mater. Interfaces 10 (2018) 24920-24929.
DOI URL |
| [96] |
Y.L. Wang, S.H. Yang, H.Y. Wang, G.S. Wang, X.B. Sun, P.G. Yin, Carbon 167 (2020) 485-494.
DOI URL |
| [97] |
P.B. Liu, S. Gao, G.Z. Zhang, Y. Huang, W.B. You, R.C. Che, Adv. Funct. Mater. 31 (2021) 2102812.
DOI URL |
| [98] |
S. Li, L.F. Lin, L.X. Yao, H.F. Zheng, Q. Luo, W.J. Xu, C.Y. Zhang, Q.S. Xie, L. Wang, D. L. Peng, J. Alloy. Compd. 856 (2021) 158183.
DOI URL |
| [99] |
L.R. Cui, Y.H. Wang, X.J. Han, P. Xu, F.Y. Wang, D.W. Liu, H.H. Zhao, Y.C. Du, Carbon 174 (2021) 673-682.
DOI URL |
| [100] | H.H. Zhao, X.Z. Xu, Y.H. Wang, D.G. Fan, D.W. Liu, K.F. Lin, P. Xu, X.J. Han, Y. C. Du, Small 16 (2020) 2003407. |
| [101] |
S. Wei, T. Chen, Q. Wang, Z.C. Shi, W. Li, S.G. Chen, J. Colloid Interface Sci. 593 (2021) 370-379.
DOI URL |
| [102] |
Z.J. Shen, C.B. Liu, H.L. Yang, Y. Xie, Q.W. Zeng, R.C. Che, ACS Appl. Mater. Interfaces 13 (2021) 28689-28702.
DOI URL |
| [103] |
Z.N. Li, X.J. Han, Y. Ma, D.W. Liu, Y.H. Wang, P. Xu, C.L. Li, Y.C. Du, ACS Sustain. Chem. Eng. 6 (2018) 8904-8913.
DOI URL |
| [104] |
C.H. Zhou, C. Wu, D. Liu, M. Yan, Chem. Eur. J. 25 (2019) 2234-2241.
DOI URL |
| [105] |
J. Liang, J. Chen, H.Q. Shen, K.T. Hu, B.N. Zhao, J. Kong, Chem. Mater. 33 (2021) 1789-1798.
DOI URL |
| [106] |
Y. Qiu, Y. Lin, H.B. Yang, L. Wang, M.Q. Wang, B. Wen, Chem. Eng. J. 383 (2020) 123207.
DOI URL |
| [107] |
Y. Liu, Z. Chen, W.H. Xie, F. Qiu, Y. Zhang, S.K. Song, C.X. Xiong, L.J. Dong, J. Alloy. Compd. 809 (2019) 151837.
DOI URL |
| [108] |
J. Ouyang, Z.L. He, Y. Zhang, H.M. Yang, Q.H. Zhao, ACS Appl. Mater. Interfaces 11 (2019) 39304-39314.
DOI URL |
| [109] |
Y.C. Du, W.W. Liu, R. Qiang, Y. Wang, X.J. Han, J. Ma, P. Xu, ACS Appl. Mater. Interfaces 6 (2014) 12997-13006.
DOI URL |
| [110] |
Y. Bhattacharjee, S. Bose, ACS Appl, Nano Mater. 4 (2021) 949-972.
DOI URL |
| [111] |
Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan, W. She, Y.J. Yang, R.C. Che, Adv. Mater. 28 (2016) 486-490.
DOI URL |
| [112] |
J.W. Liu, J. Cheng, R.C. Che, J.J. Xu, M.M. Liu, Z.W. Liu, ACS Appl. Mater. Inter- faces 5 (2013) 2503-2509.
DOI URL |
| [113] |
K. Yang, Y.H. Cui, Q. Li, P. Liu, Q.Y. Zhang, B.L. Zhang, Appl. Surf. Sci. 556 (2021) 149715.
DOI URL |
| [114] |
L. Wang, X.F. Yu, X. Li, J. Zhang, M. Wang, R.C. Che, Chem. Eng. J. 383 (2020) 123099.
DOI URL |
| [115] |
L. Wang, M.Q. Huang, X.F. Yu, W.B. You, J. Zhang, X.H. Liu, M. Wang, R.C. Che, Nano-Micro Lett. 12 (2020) 150.
DOI URL PMID |
| [116] |
J.Q. Tao, Z.B. Jiao, L.L. Xu, P.S. Yi, Z.J. Yao, F. Yang, C.Y. Zhou, P. Chen, J.T. Zhou, Z. Li, Carbon 184 (2021) 571-582.
DOI URL |
| [117] | M.Q. Huang, L. Wang, W.B. You, R.C. Che, Small 17 (2021) 2101416. |
| [118] | X.M. Zhang, G.B. Ji, W. Liu, X.X. Zhang, Q.W. Gao, Y.C. Li, Y.W. Du, J. Mater. Chem. C 4 (2016) 1860-1870. |
| [119] |
J.X. Ma, S.J. Fan, J.C. Wang, Q. Zheng, L.J. Wang, W. Jiang, Chem. Eng. J. 442 (2022) 136394.
DOI URL |
| [120] |
B. Quan, X.H. Liang, G.B. Ji, J.N. Ma, P.Y. Ouyang, H. Gong, G.Y. Xu, Y.W. Du, ACS Appl. Mater. Interfaces 9 (2017) 9964-9974.
DOI URL |
| [121] |
X.F. Liu, C.C. Hao, L.H. He, C. Yang, Y.B. Chen, C.B. Jiang, R.H. Yu, Nano Res. 11 (2018) 4169-4182.
DOI URL |
| [122] |
J. Li, P. Miao, K.J. Chen, J.W. Cao, J. Liang, Y.S. Tang, J. Kong, Compos. Part B- Eng. 182 (2020) 107613.
DOI URL |
| [123] |
L. Wang, B. Wen, X.Y. Bai, C. Liu, H.B. Yang, ACS Appl, Nano Mater. 2 (2019) 7827-7838.
DOI URL |
| [124] |
K. Zhang, F. Wu, A.M. Xie, M.X. Sun, W. Dong, ACS Appl. Mater. Interfaces 9 (2017) 33041-33048.
DOI URL |
| [125] | P. Miao, R. Zhou, K.J. Chen, J. Liang, Q.F. Ban, J. Kong, Adv. Mater. Interfaces 7 (2020) 1901820. |
| [126] | B. Wen, H. Yang, Y. Lin, L. Ma, Y. Qiu, F.F. Hu, Y.N. Zheng, J. Mater. Chem. A 9 (2021) 3567-3575. |
| [127] |
X.H. Liang, Z.M. Man, B. Quan, J. Zheng, W.H. Gu, Z. Zhang, G.B. Ji, Nano-Micro Lett. 12 (2020) 102.
DOI URL |
| [128] |
S.S. Wang, Y.C. Xu, R.R. Fu, H.H. Zhu, Q.Z. Jiao, T.Y. Feng, C.H. Feng, D.X. Shi, H.S. Li, Y. Zhao, Nano-Micro Lett. 11 (2019) 76.
DOI URL |
| [129] |
Y.L. Zhang, Y. Yan, H. Qiu, Z.L. Ma, K.P. Ruan, J.W. Gu, J. Mater. Sci. Technol. 103 (2022) 42-49.
DOI URL |
| [130] |
X.P. Han, Y. Huang, L. Ding, Y. Song, T.H. Li, P.B. Liu, ACS Appl, Nano Mater. 4 (2020) 691-701.
DOI URL |
| [131] |
J.X. Ma, W.H. Li, Y.Y. Fan, J.K. Yang, Q.K. Yang, J.C. Wang, W. Luo, W.W. Zhou, N. Nomura, L.J. Wang, W. Jiang, ACS Appl. Mater. Interfaces 11 (2019) 46386-46396.
DOI URL |
| [132] |
C.Q. Song, X.W. Yin, M.K. Han, X.L. Li, Z.X. Hou, L.T. Zhang, L.F. Cheng, Carbon 116 (2017) 50-58.
DOI URL |
| [133] |
Q.M. Hu, R.L. Yang, S.D. Yang, W.B. Huang, Z.P. Zeng, X.C. Gui, ACS Appl. Mater. Interfaces 14 (2022) 10577-10587.
DOI URL |
| [134] |
J.N. Wang, Q.J. Wang, W. Wang, P.B. Li, Y.Z. Zhao, J.J. Zhai, W. Zhao, H. Zhang, J.N. Yun, Z.Y. Zhang, J.N. Tian, Z.H. Deng, J.F. Yan, J. Alloy. Compd. 873 (2021) 159811.
DOI URL |
| [135] |
Y. Zhou, W.J. Zhou, C.H. Ni, S.G. Yan, L.M. Yu, X. Li, Chem. Eng. J. 430 (2022) 132621.
DOI URL |
| [136] |
H.L. Lv, X.H. Liang, G.B. Ji, H.Q. Zhang, Y.W. Du, ACS Appl. Mater. Interfaces 7 (2015) 9776-9783.
DOI URL |
| [137] |
Z.L. Zhang, Y.Y. Lv, X.Q. Chen, Z. Wu, Y.Y. He, L. Zhang, Y.H. Zou, J. Magn. Magn. Mater. 487 (2019) 165334.
DOI URL |
| [138] | Y. Qiu, H.B. Yang, Y. Cheng, X.Y. Bai, B. Wen, Y. Lin, Nanoscale 13 (2021) 9204-9216. |
| [139] |
Y.X. Qian, Y. Tao, W. Li, Y. Li, T. Xu, J.N. Hao, Q.H. Jiang, Y.B. Luo, J.Y. Yang, Chem. Eng. J. 425 (2021) 131608.
DOI URL |
| [140] |
C.L. Peng, Y.N. Zhang, B.S. Zhang, J. Alloy. Compd. 826 (2020) 154203.
DOI URL |
| [141] |
L. Wang, B. Wen, H.B. Yang, Y. Qiu, N.R. He, Compos. Part A Appl. Sci. Manuf. 135 (2020) 105958.
DOI URL |
| [142] | M.Q. Huang, L. Wang, K. Pei, W.B. You, X.F. Yu, Z.C. Wu, R.C. Che, Small 16 (2020) 20 0 0158. |
| [143] |
X. Sun, Y.H. Pu, F. Wu, J.Z. He, G. Deng, Z.M. Song, X.F. Liu, J.L. Shui, R.H. Yu, Chem. Eng. J. 423 (2021) 130132.
DOI URL |
| [144] |
Y. Guo, D.D. Wang, J.W. Wang, Y. Tian, H. Liu, C.T. Liu, C.Y. Shen, ACS Appl. Mater. Interfaces 14 (2022) 2038-2050.
DOI URL |
| [145] |
H.L. Yang, Z.J. Shen, H.L. Peng, Z.Q. Xiong, C.B. Liu, Y. Xie, Chem. Eng. J. 417 (2021) 128087.
DOI URL |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
