J. Mater. Sci. Technol. ›› 2022, Vol. 129: 173-180.DOI: 10.1016/j.jmst.2022.04.041
• Research Article • Previous Articles Next Articles
Junzhou Tanga,b, Shichao Lva,b, Ziyu Lina,b, Guanxin Dua,b, Manyun Tanga,b, Xu Fenga,b, Junpeng Guoc, Xiang Lid, Junfeng Chend, Lei Weie, Jianrong Qiuf, Shifeng Zhoua,b,*(
)
Received:2022-02-04
Revised:2022-04-02
Accepted:2022-04-10
Published:2022-05-28
Online:2022-05-28
Contact:
Shifeng Zhou
About author:* State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China. E-mail address: zhoushifeng@scut.edu.cn (S. Zhou).Junzhou Tang, Shichao Lv, Ziyu Lin, Guanxin Du, Manyun Tang, Xu Feng, Junpeng Guo, Xiang Li, Junfeng Chen, Lei Wei, Jianrong Qiu, Shifeng Zhou. Pressureless crystallization of glass toward scintillating composite with high crystallinity for radiation detection[J]. J. Mater. Sci. Technol., 2022, 129: 173-180.
Fig. 1. Crystallization habit of the precursor glass. (a) DTA curve of the precursor glass. (b) XRD patterns of the precursor glass (indicated by PG) and composites. (c) Raman spectra of the precursor glass and composites. (d-k) Optical microscope and the corresponding SEM images of the composites. The insets show the photographs of the samples. (l-o) SEM image and EDS mapping results of the transparent composite heat-treated at 900 °C.
Fig. 2. Microstructures of the composites heat-treated at different temperatures. (a-f) Raman analysis on the composites heat-treated at 800 °C (a-c) and 900 °C (d-f). (g, h) High-resolution TEM image of the composite heat-treated at 1100 °C.
Fig. 3. Mechanical properties of the precursor glass and the resultant composites. (a) Typical load-depth curves for various samples. The inset shows the corresponding images of indentation. (b) Vickers hardness for various samples.
Fig. 4. Photoluminescence properties of Eu- and Ce-doped precursor glass and composites. (a-c) Photographs, luminescence spectra and decay curves of Eu-doped precursor glass and composites. (d-f) Photographs, luminescence spectra and decay curves of Ce-doped precursor glass and composites.
Fig. 5. Scintillating properties of Eu- and Ce-doped composites and the performance of the constructed device. (a, b) X-ray induced luminescence. (c, d) Light yield measured with 137Cs source. (e) Schematic illustration of the constructed radiation detector. (f) Performance of the constructed radiation detector.
| [1] |
D.J. Wisniewski, L.A. Boatner, J.S. Neal, G.E. Jellison, J.O. Ramey, A. North, M. Wisniewska, A.E. Payzant, J.Y. Howe, A. Lempicki, C. Brecher, J. Glodo, IEEE Trans. Nucl. Sci. 55 (2008) 1501-1508.
DOI URL |
| [2] |
H. Lusic, M.W. Grinstaff, Chem. Rev. 113 (2013) 1641-1666.
DOI URL |
| [3] |
C. Dujardin, E. Auffray, C.E. Bourret, P. Dorenbos, P. Lecoq, M. Nikl, A.N. Vasil’ev, A. Yoshikawa, R.Y. Zhu, IEEE Trans. Nucl. Sci. 65 (2018) 1977-1997.
DOI URL |
| [4] |
D.S. McGregor, Annu. Rev. Mater. Res. 48 (2018) 245-277.
DOI URL |
| [5] |
S.P. Liu, J.A. Mares, X.Q. Feng, A. Vedda, M. Fasoli, Y. Shi, H.M. Kou, A. Beitlerova, L.X. Wu, C. D’Ambrosio, Y.B. Pan, M. Nikl, Adv. Opt. Mater. 4 (2016) 731-739.
DOI URL |
| [6] | J.B. Lian, X.D. Sun, T. Gao, Q. Li, X.D. Li, Z.G. Liu, J. Mater. Sci. Technol. 25 (2009) 254-258. |
| [7] |
L.V. Zhukova, D.D. Salimgareev, A.E. Lvov, A. A. Yuzhakova, A. S. Korsakov, D. A. Belousov, K.V. Lipustin, V.M. Kondrashin, Chin. Opt. Lett. 19 (2021) 021602.
DOI URL |
| [8] |
F. Nakamura, T. Kato, G. Okada, N. Kawaguchi, K. Fukuda, T. Yanagida, J. Eur. Ceram. Soc. 37 (2017) 1707-1711.
DOI URL |
| [9] |
A. Fukabori, T. Yanagida, J. Pejchal, S. Maeo, Y. Yokota, A. Yoshikawa, T. Ikegami, F. Moretti, K. Kamada, J. Appl. Phys. 107 (2010) 073501.
DOI URL |
| [10] | N.J. Cherepy, Z.M. Seeley, S.A. Payne, E.L. Swanberg, P.R. Beck, D.J. Schneberk, G. Stone, R. Perry, B.M. Wihl, S.E. Fisher, S.L. Hunter, P.A. Thelin, R.R. Thomp- son, N.M. Harvey, T. Stefanik, J. Kindem, in:Proceedings of the SPIE, 9593, 2015 p95930 |
| [11] |
T. Yanagida, K. Kamada, Y. Fujimoto, H. Yagi, T. Yanagitani, Opt. Mater. 35 (2013) 2480-2485.
DOI URL |
| [12] |
L. Nadaraia, N. Jalabadze, R. Chedia, L. Khundadze, Ceram. Int. 39 (2013) 2207-2214.
DOI URL |
| [13] |
J.L. Wang, K.Q. Zhao, T. Feng, X.L. Zhu, W.B. Chen, Chin. Opt. Lett. 18 (2020) 021401.
DOI URL |
| [14] |
M.Q. Cao, J.Y. Xu, C. Hu, H.M. Kou, Y. Shi, H.H. Chen, J.W. Dai, Y.B. Pan, J. Li, Ceram. Int. 43 (2017) 2165-2169.
DOI URL |
| [15] |
A. Rosenflanz, M. Frey, B. Endres, T. Anderson, E. Richards, C. Schardt, Nature 430 (2004) 761-764.
DOI URL |
| [16] |
T. Irifune, K. Kawakami, T. Arimoto, H. Ohfuji, T. Kunimoto, T. Shinmei, Nat. Commun. 7 (2016) 13753.
DOI PMID |
| [17] |
M. Allix, S. Alahrache, F. Fayon, M. Suchomel, F. Porcher, T. Cardinal, G. Matzen, Adv. Mater. 24 (2012) 5570-5575.
DOI URL |
| [18] |
S. Alahrache, K. Saghir, S. Chenu, E. Veron, D.D. Meneses, A.I. Becerro, M. Ocana, F. Moretti, G. Patton, C. Dujardin, F. Cusso, J.P. Guin, M. Nivard, J. C. Sangleboeuf, G. Matzen, M. Allix, Chem. Mater. 25 (2013) 4017-4024.
DOI URL |
| [19] | M. Boyer, X.Y. Yang, A.J.F. Carrion, Q.C. Wang, E. Veron, C. Genevois, L. Hennet, G. Matzen, E. Suard, D. Thiaudiere, C. Castro, D. Pelloquin, L.B. Kong, X.J. Kuang, M. Allix, J. Mater. Chem. A 6 (2018) 5276-5289. |
| [20] |
A. Bertrand, J. Carreaud, S. Chenu, M. Allix, E. Veron, J.R. Duclere, Y. Launay, T. Hayakawa, C. Genevois, F. Brisset, F. Celarie, P. Thomas, G. Delaizir, Adv. Opt. Mater. 4 (2016) 1482-1486.
DOI URL |
| [21] |
S.F. Wen, Y.P. Wang, B.J. Lan, W.D. Zhang, Z. Shi, S.C. Lv, Y.J. Zhao, J.R. Qiu, S.F. Zhou, Adv. Sci. 6 (2019) 1901096.
DOI URL |
| [22] |
G. Patton, F. Moretti, A. Belsky, K. Saghir, S. Chenu, G. Matzen, M. Allix, C. Du- jardin, Phys. Chem. Chem. Phys. 16 (2014) 24824-24829.
DOI PMID |
| [23] |
J.Z. Tang, G.X. Du, S.F. Wen, S.C. Lv, B.J. Lan, Z.G. Shi, X.Q. Fang, S.F. Zhou, J. Am. Ceram. Soc. 104 (2021) 1689-1697.
DOI URL |
| [24] | E.O. Gomes, B.J.A. Moulton, T.R. Cunha, L. Gracia, P.S. Pizani, J. Andres, Spec- trochim. Acta A 248 (2021) 119130. |
| [25] |
B.J.A. Moulton, A. M. Rodrigues, D.V. Sampaio, L.D. Silva, T.R. Cunha, E.D. Zan- otto, P.S. Pizani, Crystengcomm 21 (2019) 2768-2778.
DOI URL |
| [26] |
S. Hendy, Appl. Phys. Lett. 81 (2002) 1171-1173.
DOI URL |
| [27] |
X.Z. Wang, Y. Wang, X.B. Zhang, W. Ding, L.L. Li, L.J. Huang, L.A. Belfiore, J.G. Tang, J. Mater. Sci. Technol. 65 (2021) 72-81.
DOI URL |
| [28] |
S. Zhou, H. Wang, L. Zhong, J.Q. Zhao, L. Li, G.H. Li, J. Mater. Sci. Technol. 34 (2018) 949-954.
DOI URL |
| [29] |
X.M. Li, S.S. Zhou, R.F. Wei, X.Y. Liu, B.Q. Cao, H. Guo, Chin. Opt. Lett. 18 (2020) 051601.
DOI URL |
| [30] |
M.Y. Peng, Z.W. Pei, G.Y. Hong, Q. Su, J. Mater. Chem. 13 (2003) 1202-1205.
DOI URL |
| [31] |
C.H. Wang, X.T. Chen, X. Luo, J.J. Zhao, X.S. Qiao, Y. Liu, X.P. Fan, G.D. Qian, X. H. Zhang, G.R. Han, RSC Adv. 8 (2018) 34536-34542.
DOI URL |
| [32] |
Q. Luo, X.P. Fan, X.S. Qiao, H. Yang, M.Q. Wang, X.H. Zhang, J. Am. Ceram. Soc. 92 (2009) 942-944.
DOI URL |
| [33] |
Q. Yao, P. Hu, P. Sun, M. Liu, R. Dong, K.F. Chao, Y.F. Liu, J. Jiang, H.C. Jiang, Adv. Mater. 32 (2020) 1907888.
DOI URL |
| [34] |
M.V.D. Rezende, P.J.R. Montes, M.E.G. Valerio, J. Lumin. 132 (2012) 1106-1111.
DOI URL |
| [35] |
Y. Tratsiak, M. Korjik, A. Fedorov, G. Dosovitsky, O. Akimova, E. Gordienko, M. Fasoli, V. Mechinsky, A. Vedda, F. Moretti, E. Trusova, J. Alloy. Compd. 765 (2018) 207-212.
DOI URL |
| [1] | Yuan Zhang, Guoqi Tan, Mingyang Zhang, Qin Yu, Zengqian Liu, Yanyan Liu, Jian Zhang, Da Jiao, Faheng Wang, Longchao Zhuo, Zhefeng Zhang, Robert O. Ritchie. Bioinspired tungsten-copper composites with Bouligand-type architectures mimicking fish scales [J]. J. Mater. Sci. Technol., 2022, 96(0): 21-30. |
| [2] | Qiangang Fu, Pei Zhang, Lei Zhuang, Lei Zhou, Jiaping Zhang, Jie Wang, Xianghui Hou, Ralf Riedel, Hejun Li. Micro/nano multiscale reinforcing strategies toward extreme high-temperature applications: Take carbon/carbon composites and their coatings as the examples [J]. J. Mater. Sci. Technol., 2022, 96(0): 31-68. |
| [3] | Q. Yan, B. Chen, L. Cao, K.Y. Liu, S. Li, L. Jia, K. Kondoh, J.S. Li. Improved mechanical properties in titanium matrix composites reinforced with quasi-continuously networked graphene nanosheets and in-situ formed carbides [J]. J. Mater. Sci. Technol., 2022, 96(0): 85-93. |
| [4] | Haicheng Wang, Huating Wu, Huifang Pang, Yuhua Xiong, Shuwang Ma, Yuping Duan, Yanglong Hou, Changhui Mao. Lightweight PPy aerogel adopted with Co and SiO2 nanoparticles for enhanced electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 97(0): 213-222. |
| [5] | Hua Jian, Qinrui Du, Qiaoqiao Men, Li Guan, Ruosong Li, Bingbing Fan, Xin Zhang, Xiaoqin Guo, Biao Zhao, Rui Zhang. Structure-dependent electromagnetic wave absorbing properties of bowl-like and honeycomb TiO2/CNT composites [J]. J. Mater. Sci. Technol., 2022, 109(0): 105-113. |
| [6] | Liliang Shao, Lin Xue, Qiang Luo, Kuibo Yin, Zirui Yuan, Mingyun Zhu, Tao Liang, Qiaoshi Zeng, Litao Sun, Baolong Shen. Heterogeneous GdTbDyCoAl high-entropy alloy with distinctive magnetocaloric effect induced by hydrogenation [J]. J. Mater. Sci. Technol., 2022, 109(0): 147-156. |
| [7] | Donghai Li, Binbin Wang, Liangshun Luo, Xuewen Li, Yanjin Xu, BinQiang Li, Diween Hawezy, Liang Wang, Yanqing Su, Jingjie Guo, Hengzhi Fu. Effect of processing parameters on the microstructure and mechanical properties of TiAl/Ti2AlNb laminated composites [J]. J. Mater. Sci. Technol., 2022, 109(0): 228-244. |
| [8] | Y.K. Xiao, H. Chen, Z.Y. Bian, T.T. Sun, H. Ding, Q. Yang, Y. Wu, Q. Lian, Z. Chen, H.W. Wang. Enhancing strength and ductility of AlSi10Mg fabricated by selective laser melting by TiB2 nanoparticles [J]. J. Mater. Sci. Technol., 2022, 109(0): 254-266. |
| [9] | Jianwen Le, Yuanfei Han, Peikun Qiu, Shaopeng Li, Guangfa Huang, Jianwei Mao, Weijie Lu. Insight into the formation mechanism and interaction of matrix/TiB whisker textures and their synergistic effect on property anisotropy in titanium matrix composites [J]. J. Mater. Sci. Technol., 2022, 110(0): 1-13. |
| [10] | Qiong Lu, Yaozha Lv, Chi Zhang, Hongbo Zhang, Wei Chen, Zhanyuan Xu, Peizhong Feng, Jinglian Fan. Highly oxidation-resistant Ti-Mo alloy with two-scale network Ti5Si3 reinforcement [J]. J. Mater. Sci. Technol., 2022, 110(0): 24-34. |
| [11] | Qing Liu, Yi Zhang, Yibin Liu, Chunmei Li, Zongxu Liu, Baoliang Zhang, Qiuyu Zhang. Magnetic field-induced strategy for synergistic CI/Ti3C2Tx/PVDF multilayer structured composite films with excellent electromagnetic interference shielding performance [J]. J. Mater. Sci. Technol., 2022, 110(0): 246-259. |
| [12] | Shuang Jiang, Lin Peng Ru, Kristián Máthis, Hai-Le Yan, Gergely Farkas, Zoltán Hegedues, Ulrich Lienert, Johan Moverare, Xiang Zhao, Liang Zuo, Nan Jia, Yan-Dong Wang. Shear banding-induced 〈c+a〉 slip enables unprecedented strength-ductility combination of laminated metallic composites [J]. J. Mater. Sci. Technol., 2022, 110(0): 260-268. |
| [13] | Jiang Guo, Xu Li, Zhuoran Chen, Jianfeng Zhu, Xianmin Mai, Renbo Wei, Kai Sun, Hu Liu, Yunxia Chen, Nithesh Naik, Zhanhu Guo. Magnetic NiFe2O4/Polypyrrole nanocomposites with enhanced electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 108(0): 64-72. |
| [14] | Yuhui Zhu, Weizhen Wang, Yuanyuan Song, Shiming Zhang, Hong Li, Aimin Wang, Haifeng Zhang, Zhengwang Zhu. Atomic-scale Nb heterogeneity induced icosahedral short-range ordering in metallic glasses [J]. J. Mater. Sci. Technol., 2022, 108(0): 73-81. |
| [15] | Tingting Tang, Shanchi Wang, Yue Jiang, Zhiguang Xu, Yu Chen, Tianshu Peng, Fawad Khan, Jiabing Feng, Pingan Song, Yan Zhao. Flexible and flame-retarding phosphorylated MXene/polypropylene composites for efficient electromagnetic interference shielding [J]. J. Mater. Sci. Technol., 2022, 111(0): 66-75. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
