J. Mater. Sci. Technol. ›› 2022, Vol. 126: 275-287.DOI: 10.1016/j.jmst.2022.03.020
Special Issue: Modeling and simulations 2022
• Research Article • Previous Articles
QiZhaoa, Magd Abdel Wahabb,*(
), Yong Lingc, Zhiyi Liud
Received:2022-01-31
Revised:2022-03-07
Accepted:2022-03-09
Published:2022-11-01
Online:2022-11-10
Contact:
Magd Abdel Wahab
About author:*magd.a.w@vlu.edu.vn, magd.abdelwahab@ugent.be (M. Abdel Wahab).QiZhao, Magd Abdel Wahab, Yong Ling, Zhiyi Liu. Fatigue crack propagation across grain boundary of Al-Cu-Mg bicrystal based on crystal plasticity XFEM and cohesive zone model[J]. J. Mater. Sci. Technol., 2022, 126: 275-287.
| Parameter | Unit | Value |
|---|---|---|
| C11 | [GPa] | 112 |
| C12 | [GPa] | 59.5 |
| C44 | [GPa] | 26.7 |
| γ˙0 | [s−1] | 1×10−3 |
| n | [-] | 10 |
| μ | [GPa] | 26.5 |
| b | [nm] | 0.285 |
| K | [-] | 38 |
| yc | [nm] | 0.957 |
| h | [MPa] | 3600 |
| hd | [-] | 380 |
Table 1. Implanted CP parameters for Al-Cu-Mg crystal [18].
| Parameter | Unit | Value |
|---|---|---|
| C11 | [GPa] | 112 |
| C12 | [GPa] | 59.5 |
| C44 | [GPa] | 26.7 |
| γ˙0 | [s−1] | 1×10−3 |
| n | [-] | 10 |
| μ | [GPa] | 26.5 |
| b | [nm] | 0.285 |
| K | [-] | 38 |
| yc | [nm] | 0.957 |
| h | [MPa] | 3600 |
| hd | [-] | 380 |
Fig. 1. Decomposition diagram of a cracked element with nodes 1-4 into two elements; the solid circles are original nodes and the hollow circles are phantom nodes [33].
Fig. 3. Schematic diagram showing twist angle and tilt angle, (a) definition of twist angle (α) and tilt angle (β) for grain orientation, and (b) twist angle (α') and tilt angle (β') for slip system, where saand sbrepresent slip directions of grain a and b, respectively, and naand nbrepresent slip plane normals of grain a and b, respectively.
Fig. 6. Simulated FCP paths within L/L (a, b) and L/Goss (c, d) bicrystal grains. (a) and (c) are the FCP paths with von Mises stress distributions, and (b) and (d) are the FCP paths within bicrystal model.
Fig. 7. Simulated FCP paths within bicrystal grains with different twist angle (α). The bicrystal in (a-d) is L/Goss-Brass, L/Brass, L/r-Brass, and L/P, respectively. (e, f, g, h) is the magnification view near GB from (a, b, c, d), respectively.
Fig. 9. Simulated FCP paths within L/Goss-Brass bicrystal grains. The number represents the average size of the 3 nearest mesh to GB at vertical direction. The average size is 18 μm (a), 11.5 μm (b), and 8.89 μm (c), respectively.
Fig. 10. Cumulative plastic strain (CPS) of simulations and experiments: (a-c) CPS distribution within bicrystals with different effective twist (αe), and the αe is 0° (a), 20° (b) and 35° (c), respectively; (d, e) Experimental results about CPS distribution along different GBs, and these data are from Ref. [3].
Fig. 12. {111} pole figures of L/Brass bicrystal corresponding to different FCP stage: (a) the original {111} pole figure, and (b-d) the {111} pole figures after 9 cycles, 12 cycles and 21 cycles, respectively.
| [1] | W. Wen, T. Zhai, Metall. Mater. Trans. A, 43 (2012), pp. 2743-2752. |
| [2] | W. Wu, Z. Liu, Y. Hu, F. Li, S. Bai, P. Xia, A. Wang, C. Ye, J. Alloy. Compd., 730 (2018), pp. 318-326. |
| [3] | F. Li, Z. Liu, W. Wu, Q. Zhao, Y. Zhou, S. Bai, X. Wang, G. Fan, Int. J. Fatigue, 91 (2016), pp. 68-78. |
| [4] | Z. Liu, F. Li, P. Xia, S. Bai, Y. Gu, D. Yu, Mater.Sci. Eng. A, 625 (2015), pp. 271-277. |
| [5] | Y. Li, Y. Jiang, B. Liu, Q. Luo, B. Hu, Q. Li, J. Mater. Sci. Technol., 65 (2021), pp. 190-201. |
| [6] | Y. Li, B. Hu, B. Liu, A. Nie, Q. Gu, J. Wang Q. Li, Acta Meter, 187 (2020), pp. 51-65. |
| [7] | J. Xu, Y. Li, K. Ma, Y. Fu, E. Guo, Z. Chen, Q. Gu, Y. Han, T. Wang, Q. Li, Scr. Mater., 187 (2020), pp. 142-147. |
| [8] | M. Liu, S. Nambu, K. Zhou, P. Wang, G. Lu, C. Lu, K.A. Tieu, T. Koseki, Metall. Mater. Trans. A, 50 (2019), pp. 2399-2412. |
| [9] | C. Liu,Dislocation-Based Crystal Plasticity Finite Element Modelling of Polycrystalline Material Deformation University of California (2006) Ph.D. thesis. |
| [10] | L. Li, L.M. Shen, G. Proust, Mech. Mater., 81 (2015), pp. 84-93. |
| [11] | F. Briffod, T. Shiraiwa, M. Enoki, Int. J. Fatigue, 107 (2018), pp. 72-82. |
| [12] | V. Gaur, F. Briffod, M. Enoki, Mater.Sci. Eng. A, 775 (2020), Article 138958. |
| [13] | J. Rannou, N. Limodin, J. Réthoré, A. Gravouil, W. Ludwig, M.C. Baïetto-Dubourg, J.Y. Buffière, A. Combescure, F. Hild, S. Roux, Comput. Methods Appl. Mech. Eng., 199 (2010), pp. 1307-1325. |
| [14] | J. Cuadra, K.P. Baxevanakis, A. Loghin, A. Kontsos, Fatigue Fract. Eng. Mater. Struct., 39 (2016), pp. 722-736. |
| [15] | A. Solob, A. Grbovic, Ž. Božić, S.A. Sedmak, Eng. Fail. Anal., 112 (2020), Article 104516. |
| [16] | M. Elices, G.V. Guinea, J. Gómez, J. Planas, Eng. Fract. Mech., 69 (2002), pp. 137-163. |
| [17] | P. Zhang, L. Zhang, K.P. Baxevanakis, L.G. Zhao, C. Bullough, Int. J. Fatigue, 136 (2020), Article 105594. |
| [18] | Q. Zhao, M. Abdel Wahab, Y. Ling, Z. Liu, Mater. Des., 210 (2021), Article 110015. |
| [19] | Q. Zhao, M. Abdel Wahab, Y. Ling, Z. Liu, Mater. Des., 206 (2021), Article 109794. |
| [20] | L. Zhao, P. Chakraborty, M.R. Tonks, I. Szlufarska, Comput. Mater. Sci., 128 (2017), pp. 320-330. |
| [21] | H. Sheikh, R. Ebrahimi, E. Bagherpour, Mater. Des., 109 (2016), pp. 289-299. |
| [22] | S. Hasunuma, T. Ogawa, Int. J. Fatigue, 127 (2019), pp. 488-499. |
| [23] | L. Kubin, B. Devincre, T. Hoc, Acta Mater, 56 (2008), pp. 6040-6049. |
| [24] | A. Ma, F. Roters, Acta Mater, 52 (2004), pp. 3603-3612. |
| [25] | L. Tabourot, M. Fivel, E. Rauch, Mater.Sci. Eng. A, 234-236 (1997), pp. 639-642. |
| [26] | L. Priester,Grain Boundaries and Crystalline Plasticity ISTE Ltd., London (2011). |
| [27] | F. Briffod, T. Shiraiwa, M. Enoki, Int. J. Fatigue, 107 (2018), pp. 72-82. |
| [28] | P. Van Houtte, L. Delannay, S.R. Kalidindi, Int. J. Plasticity, 18 (2002), pp. 359-377. |
| [29] | S. Bai, Z. Liu, X. Zhou, Y. Gu, D. Yu, Scr. Mater., 64 (2011), pp. 1133-1136. |
| [30] | I. Scheider, W. Brocks, Key Eng. Mater., 251-252 (2003), pp. 313-318. |
| [31] | H. Krull, H. Yuan, Eng. Fract. Mech., 78 (2011), pp. 525-533. |
| [32] | H. Hosseini-Toudeshky, M. Jamalian, Mech. Mater., 89 (2015), pp. 229-240. |
| [33] | J. Song, P.M.A. Areias, T. Belytschko, Int. J. Numer. Meth. Eng., 67 (2006), pp. 868-893. |
| [34] | K. Pereira, M. Abdel Wahab, Tribol. Int., 141 (2020), Article 105899. |
| [35] | B. Künkler, O. Düber, P. Köster, U. Krupp, C.-P. Fritzen, H.-J. Christ, Eng. Fract. Mech., 75 (2008), pp. 715-725. |
| [36] | Y. Zhou, Q. Fan, X. Liu, D. Wang, X. Zhu, Mater. Des., 188 (2020), Article 108423. |
| [37] | T. Leffers, A modified Sachs approach to the plastic deformation of polycrystals as a realistic alternative to the Taylor model Strength of Metals and Alloys, Pergamon (1979), pp. 769-774. |
| [38] | T. Zhai, A.J. Wilkinson, J.W. Martin, Acta Mater, 48 (2000), pp. 4917-4927. |
| [39] | W. Wen, T. Zhai, Philos. Mag. A, 91 (2011), pp. 3557-3577. |
| [40] | Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol., 44 (2020), pp. 171-190. |
| [41] | Y. Pang, D. Sun, Q. Gu, K. Chou, X. Wang, Q. Li, Cryst. Growth Des., 16 (2016), pp. 2404-2415. |
| [42] | Q. Li, X. Lin, Q. Luo, Y. Chen, J. Wang, B. Jiang, F. Pan, Int. J. Miner. Metall. Mater., 29 (2022), pp. 32-48. |
| [43] | Q. Li, Y. Lua, Q. Luo, X. Yang, Y. Yang, J. Tan, Z. Dong, J. Dang, J. Li, Y. Chen, B. Jiang, S. Sun, F. Pan, J. Magn. Alloy, 9 (2021), pp. 1922-1941. |
| [44] | H.W. Haslach, Mech. Time-Depend Mater., 14 (2010), pp. 91-110. |
| [45] | H. Tada, P.C. Paris, G.R. Irwin, The Stress Analysis of Crack Handbook (3rd Ed.), ASME press, New York (2000). |
| [46] | P. Cai, W. Wen, T. Zhai, Mater.Sci. Eng. A, 743 (2019), pp. 453-463. |
| [1] | Bailing An, Rongmei Niu, Yan Xin, William L. Starch, Zhaolong Xiang, Yifeng Su, Robert E. Goddard, Jun Lu, Theo M. Siegrist, Engang Wang, Ke Han. Suppression of discontinuous precipitation and strength improvement by Sc doping in Cu-6 wt%Ag alloys [J]. J. Mater. Sci. Technol., 2023, 135(0): 80-96. |
| [2] | Mujin Yang, Chao Huang, Jiajia Han, Haichen Wu, Yilu Zhao, Tao Yang, Shenbao Jin, Chenglei Wang, Zhou Li, Ruiying Shu, Cuiping Wang, Huanming Lu, Gang Sha, Xingjun Liu. Development of the high-strength ductile ferritic alloys via regulating the intragranular and grain boundary precipitation of G-phase [J]. J. Mater. Sci. Technol., 2023, 136(0): 180-199. |
| [3] | Wentao Su, Lei Chen, Wen Zhang, Sijia Huo, , Yujin Wang, Yu Zhou. Insights into grain boundary segregation and solubility limit of Cr in (TiZrNbTaCr)C [J]. J. Mater. Sci. Technol., 2023, 139(0): 1-9. |
| [4] | Ting Wang, Xiaoyang Wang, Xiaolei Ma, Long Cheng, Yue Yuan, Wangguo Guo, Ke Xu, Mi Liu, Ziyang Xie, Liping Guo, Guang-Hong Lu. Neon-concentration dependent retarding effect on the recrystallization of irradiated tungsten: Experimental analysis and molecular dynamics simulation [J]. J. Mater. Sci. Technol., 2023, 139(0): 245-259. |
| [5] | F. Wang, L.M. Lei, X. Fu, L. Shi, X.M. Luo, Z.M. Song, G.P. Zhang. Toward developing Ti alloys with high fatigue crack growth resistance by additive manufacturing [J]. J. Mater. Sci. Technol., 2023, 132(0): 166-178. |
| [6] | X.F. Xu, X.Y. Li, B. Zhang. Stabilizing nanograined Fe-Cr alloy by Si-assisted grain boundary segregation [J]. J. Mater. Sci. Technol., 2023, 134(0): 223-233. |
| [7] | F.H. Duan, Y. Lin, Q. Li, J.H. Luan, J. Lu, J. Pan, Y. Li. Hardness-thermal stability synergy in nanograined Ni and Ni alloys: Superposition of nanotwin and low-energy columnar boundary [J]. J. Mater. Sci. Technol., 2023, 137(0): 123-131. |
| [8] | Dina Bayoumy, Kwangsik Kwak, Torben Boll, Stefan Dietrich, Daniel Schliephake, Jie Huang, Junlan Yi, Kazuki Takashima, Xinhua Wu, Yuman Zhu, Aijun Huang. Origin of non-uniform plasticity in a high-strength Al-Mn-Sc based alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 121-133. |
| [9] | Shuo Sun, Yang Yang, Chenxu Han, Guixun Sun, Yan Chen, Hongxiang Zong, Jiangjiang Hu, Shuang Han, Xiaozhou Liao, Xiangdong Ding, Jianshe Lian. Unveiling the grain boundary-related effects on the incipient plasticity and dislocation behavior in nanocrystalline CrCoNi medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 127(0): 98-107. |
| [10] | Duoduo Wang, Qunbo Fan, Xingwang Cheng, Yu Zhou, Ran Shi, Yan Qian, Le Wang, Xinjie Zhu, Haichao Gong, Kai Chen, Jingjiu Yuan, Liu Yang. Texture evolution and slip mode of a Ti-5.5Mo-7.2Al-4.5Zr-2.6Sn-2.1Cr dual-phase alloy during cold rolling based on multiscale crystal plasticity finite element model [J]. J. Mater. Sci. Technol., 2022, 111(0): 76-87. |
| [11] | Xiong Yi, Grilli Nicolò, S. Karamched Phani, Li Bo-Shiuan, Tarleton Edmund, J. Wilkinson Angus. Cold dwell behaviour of Ti6Al alloy: Understanding load shedding using digital image correlation and dislocation based crystal plasticity simulations [J]. J. Mater. Sci. Technol., 2022, 128(0): 254-272. |
| [12] | Zhuang Tang, Kai Ning, Zhiyao Fu, Ze Lian, Kangning Wu, Shoudao Huang. Significantly enhanced varistor properties of CaCu3Ti4O12 based ceramics by designing superior grain boundary: Deepening and broadening interface states [J]. J. Mater. Sci. Technol., 2022, 108(0): 82-89. |
| [13] | Mengyuan Hao, Pei Li, Xuexiong Li, Tianlong Zhang, Dong Wang, Qiaoyan Sun, Libin Liu, Jinshan Li, Yuyou Cui, Rui Yang, Dongsheng Xu. Heterogeneous precipitate microstructure in titanium alloys for simultaneous improvement of strength and ductility [J]. J. Mater. Sci. Technol., 2022, 124(0): 150-163. |
| [14] | Fu-Zhi Dai, Bo Wen, Yinjie Sun, Yixiao Ren, Huimin Xiang, Yanchun Zhou. Grain boundary segregation induced strong UHTCs at elevated temperatures: A universal mechanism from conventional UHTCs to high entropy UHTCs [J]. J. Mater. Sci. Technol., 2022, 123(0): 26-33. |
| [15] | X.J. Guan, Z.P. Jia, S.M. Liang, F. Shi, X.W. Li. A pathway to improve low-cycle fatigue life of face-centered cubic metals via grain boundary engineering [J]. J. Mater. Sci. Technol., 2022, 113(0): 82-89. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
