J. Mater. Sci. Technol. ›› 2022, Vol. 126: 266-274.DOI: 10.1016/j.jmst.2022.02.051
Special Issue: Composites 2022; Electronic materials 2022
• Research Article • Previous Articles Next Articles
Jin-Bo Cheng, Hai-Bo Zhao(
), Ai-Ning Zhang, Yan-Qin Wang, Yu-Zhong Wang(
)
Accepted:2022-04-22
Published:2022-11-01
Online:2022-11-10
Contact:
Hai-Bo Zhao,Yu-Zhong Wang
About author:yzwang@scu.edu.cn (Y.-Z. Wang).Supported by:Jin-Bo Cheng, Hai-Bo Zhao, Ai-Ning Zhang, Yan-Qin Wang, Yu-Zhong Wang. Porous carbon/Fe composites from waste fabric for high-efficiency electromagnetic wave absorption[J]. J. Mater. Sci. Technol., 2022, 126: 266-274.
Fig. 2. SEM images of Porous C from waste CT (a), Porous C/Fe-2 composite (b-d), the relative element mapping images (e-g) and EDX data (h) of the selected area of Porous C/Fe-2 (d), the relative element content (i) for Porous C and Porous C/Fe-1/2/3 composites.
Fig. 4. XRD patterns (a), Raman spectra (b), XPS survey spectra of different samples (c), core-level spectrum of C 1 s (d), Fe 2p (e) in the Porous C/Fe-3 composite, TG curves (f) in air, Magnetization curves (g), Nitrogen sorption isotherms and size distributions (embedded figure) (h) based on the Barrett-Joyner-Halenda method for Porous C/Fe-1/2/3 composites from waste polyester cotton fabric, (i) TGA curves in N2 atmosphere for different precursor samples.
Fig. 5. RL of Porous C/Fe-1-30 wt.% (a), Porous C/Fe-2-30 wt.% (b), Porous C/Fe-3-30 wt.% (c), Porous C/Fe-1-40 wt.% (d), Porous C/Fe-2-40 wt.% (e), and Porous C/Fe-3-40 wt.% (f).
| Samples | RLmin (dB) | d (mm) | EAB (GHz) | d (mm) | Ref. |
|---|---|---|---|---|---|
| Ni-loaded FA composites | −45.7 | 1.6 | 4.6 | 1.6 | [ |
| HCDC-30 | −47.0 | / | 5.5 | 1.9 | [ |
| PVB-NiO-FAC | −47.5 | 2.5 | 5.4 | 2.5 | [ |
| MnFe2O4/bio-carbon | −38.8 | 2.5 | 3.6 | 2.5 | [ |
| Fe-loaded fly ash | −40.3 | 2.5 | 4.1 | 1.5 | [ |
| MnNiZn ferrite/waste toner | −22.5 | 5 | 4.55 | 6 | [ |
| CNT/Ni from the waste mask | −56.3 | 2.0 | 4.3 | 2.0 | [ |
| CoSn/N-doped carbon | −48.2 | 2.2 | 5.84 | 2.2 | [ |
| MnO@C hybrid | −76.0 | 2.0 | 5.2 | 2.1 | [ |
| NiCo/CeO2/Ti3C2Tx-0.1 | −42.48 | 2.0 | 6.32 | 1.9 | [ |
| C@Ni composite | −54.1 | 3.4 | 5.5 | 1.8 | [ |
| Porous C/Fe-1 | −43.8 | 4.2 | 3.7 | 1.5 | This work |
| Porous C/Fe-2 | −48.4 | 2.245 | 4.2 | 1.5 | |
| Porous C/Fe-3 | −50.5 | 1.7 | 3.2 | 1.5 | |
| Porous C/Fe-800 | −47.1 | 2.5 | 4.4 | 2.5 |
Table 1. Microwave absorption properties of Porous C/Fe composites and other absorbers from waste materials and recent literature.
| Samples | RLmin (dB) | d (mm) | EAB (GHz) | d (mm) | Ref. |
|---|---|---|---|---|---|
| Ni-loaded FA composites | −45.7 | 1.6 | 4.6 | 1.6 | [ |
| HCDC-30 | −47.0 | / | 5.5 | 1.9 | [ |
| PVB-NiO-FAC | −47.5 | 2.5 | 5.4 | 2.5 | [ |
| MnFe2O4/bio-carbon | −38.8 | 2.5 | 3.6 | 2.5 | [ |
| Fe-loaded fly ash | −40.3 | 2.5 | 4.1 | 1.5 | [ |
| MnNiZn ferrite/waste toner | −22.5 | 5 | 4.55 | 6 | [ |
| CNT/Ni from the waste mask | −56.3 | 2.0 | 4.3 | 2.0 | [ |
| CoSn/N-doped carbon | −48.2 | 2.2 | 5.84 | 2.2 | [ |
| MnO@C hybrid | −76.0 | 2.0 | 5.2 | 2.1 | [ |
| NiCo/CeO2/Ti3C2Tx-0.1 | −42.48 | 2.0 | 6.32 | 1.9 | [ |
| C@Ni composite | −54.1 | 3.4 | 5.5 | 1.8 | [ |
| Porous C/Fe-1 | −43.8 | 4.2 | 3.7 | 1.5 | This work |
| Porous C/Fe-2 | −48.4 | 2.245 | 4.2 | 1.5 | |
| Porous C/Fe-3 | −50.5 | 1.7 | 3.2 | 1.5 | |
| Porous C/Fe-800 | −47.1 | 2.5 | 4.4 | 2.5 |
Fig. 6. Real parts of permittivity (ε′, a), imaginary parts of permittivity (ε″, b), dielectric tangent loss values (ε″/ε′, c) for Porous C/Fe-1/2/3-40 wt.%. ε′-ε″ plots for Porous C/Fe-1-40 wt.% (d), Porous C/Fe-2-40 wt.% (e), Porous C/Fe-3-40 wt.% (f); Frequency dependences of relative impedance matching (|Zin/Z0|) at different thicknesses (g) and attenuation constants (h) for Porous C/Fe-1/2/3-40 wt.%. (i) Schematic illustration of the possible microwave absorption mechanism of Porous C/Fe composites.
| [1] | X. Zeng, X. Cheng, R. Yu, G.D. Stucky, Carbon, 168 (2020), pp. 606-623. |
| [2] | H.G. Shi, T. Wang, J.B. Cheng, H.B. Zhao, S.L. Li, Y.Z. Wang, J. Alloys Compd., 863 (2021), Article 158090. |
| [3] | H.B. Zhao, Z.B. Fu, X.Y. Liu, X.C. Zhou, H.B. Chen, M.L. Zhong, C.Y. Wang, Ind. Eng. Chem. Res., 57 (2017), pp. 202-211. |
| [4] | Y. Guo, H. Qiu, K. Ruan, Y. Zhang, J. Gu, Nano-Micro Lett, 14 (2021), p. 26. |
| [5] | Y. Guo, H. Qiu, K. Ruan, S. Wang, Y. Zhang, J. Gu, Compos. Sci. Technol., 219 (2022), Article 109253. |
| [6] | L. Wang, Z. Ma, Y. Zhang, H. Qiu, K. Ruan, J. Gu, Carbon Energy (2022), pp. 1-11. |
| [7] | M. Zhou, W. Gu, G. Wang, J. Zheng, C. Pei, F. Fan, G. Ji, J. Mater. Chem. A, 8 (2020), pp. 24267-24283. |
| [8] | H. Zhao, Y. Cheng, W. Liu, L. Yang, B. Zhang, L.P. Wang, G. Ji, Z.J. Xu, Nano-Micro Lett, 11 (2019), p. 24. |
| [9] | X. Li, E. Cui, Z. Xiang, L. Yu, J. Xiong, F. Pan, W. Lu, J. Alloys Compd., 819 (2020), Article 152952. |
| [10] | C. Li, J. Sui, X. Jiang, Z. Zhang, L. Yu Chem. Eng. J., 385 (2020), Article 123882. |
| [11] | J.B. Cheng, H.B. Zhao, M. Cao, M.E. Li, A.N. Zhang, S.L. Li, Y.Z. Wang, ACS Appl. Mater. Interfaces, 12 (2020), pp. 26301-26312. |
| [12] | X. Zhou, Z. Jia, A. Feng, X. Wang, J. Liu, M. Zhang, H. Cao, G. Wu, Carbon, 152 (2019), pp. 827-836. |
| [13] | J.B. Cheng, W.J. Yuan, A.N. Zhang, H.B. Zhao, Y.Z. Wang, J. Mater. Chem. C, 8 (2020), p. 13712. |
| [14] | J.B. Cheng, H.G. Shi, M. Cao, T. Wang, H.B. Zhao, Y.Z. Wang, Mater. Adv., 1 (2020), pp. 2631-2645. |
| [15] | Y. Cheng, H. Zhao, H. Lv, T. Shi, G. Ji, Y. Hou, Adv. Electron Mater., 6 (2019), Article 1900796. |
| [16] | H.B. Zhao, J.B. Cheng, Y.Z. Wang, J. Alloys Compd., 736 (2018), pp. 71-79. |
| [17] | Y. Wang, H. Wang, J. Ye, L. Shi, X. Feng Chem. Eng. J., 383 (2020), Article 123096. |
| [18] | X. Liang, G. Wang, W. Gu, G. Ji, Carbon, 177 (2021), pp. 97-106. |
| [19] | J. Tao, J. Zhou, Z. Yao, Z. Jiao, B. Wei, R. Tan, Z. Li, Carbon, 172 (2021), pp. 542-555. |
| [20] | J. Wang, F. Wu, Y. Cui, A. Zhang, Q. Zhang, B. Zhang, Carbon, 175 (2021), pp. 164-175. |
| [21] | M. Zhang, X. Fang, Y. Zhang, J. Guo, C. Gong, D. Estevez, F. Qin, Nanotechnology, 31 (2020), Article 275707. |
| [22] | Y. Wang, R. Liu, J. Zhang, M. Miao, X. Feng, Appl. Surf. Sci., 546 (2021), Article 149143. |
| [23] | X. Xu, S. Shi, Y. Tang, G. Wang, M. Zhou, G. Zhao, X. Zhou, S. Lin, F. Meng, Adv Sci, 8 (2021), Article 2002658. |
| [24] | Z. Liu, F. Pan, B. Deng, Z. Xiang, W. Lu, Carbon, 174 (2021), pp. 59-69. |
| [25] | J. Hu, Y. Shen, L. Xu, Y. Liu, Chem. Phys. Lett., 739 (2020), Article 136953. |
| [26] | Y. Wang, X. Di, X. Wu, X. Li, J. Alloys Compd., 846 (2020), Article 156215. |
| [27] | S. Wang, Q. Li, K. Hu, S. Wang, Q. Liu, X. Kong, Appl. Surf. Sci., 544 (2021), Article 148891. |
| [28] | S. Goel, A. Garg, H.B. Baskey, M.K. Pandey, S. Tyagi, J. Alloys Compd., 875 (2021), Article 160028. |
| [29] | X. Yang, X. Pang, M. Cao, X. Liu, X. Li, Ind. Crops. Prod., 171 (2021), Article 113814. |
| [30] | P.J. Bora, M. Porwal, K.J. Vinoy, P.C.Ramamurthy Kishore, G. Madras, Compos. B Eng., 134 (2018), pp. 151-163. |
| [31] | A. Hassan, W. Ding, M.A. Aslama, Y. Bian, Q. Liu, Z. Sheng, J. Mater. Res. Technol., 9 (2020), pp. 12869-12879. |
| [32] | B. Zhu, Y. Tian, Y. Wang, L. Mao, F. Gao, G. Wen, L. Liang, K. Zhang, G. Li, ACS Appl. Electron. Mater., 2 (2020), pp. 3307-3319. |
| [33] | G. Fan, Y. Jiang, J. Xin, Z. Zhang, X. Fu, P. Xie, C. Cheng, Y. Liu, Y. Qu, K. Sun, R. Fan, ACS Sustain. Chem. Eng., 7 (2019), pp. 18765-18774. |
| [34] | H. Habib, Y. Atassi, A. Salloum, N.N. Ali, M. Jafarian, J. Electron. Mater., 50 (2021), pp. 2049-2056. |
| [35] | B. Zhu, Y. Tian, Y. Wang, L. Mao, F. Gao, G. Wen, L. Liang, K. Zhang, G. Li, ACS Appl. Electron. Mater., 2 (2020), pp. 3307-3319. |
| [36] | R.H. Yu, X. Wen, J. Liu, Y.H. Wang, X.C. Chen, K. Wenelska, E. Mijowska, T. Tang, Appl. Catal. B-Environ., 298 (2021), Article 120544. |
| [37] | G. Sandin, G.M. Peters, J. Clean. Prod., 184 (2018), pp. 353-365. |
| [38] | G. Hole, A.S. Hole, J. Clean. Prod., 212 (2019), pp. 910-915. |
| [39] | W. Leal Filho, D. Ellams, S. Han, D. Tyler, V.J. Boiten, A. Paço, H. Moora, A.L. Balogun, J. Clean. Prod., 218 (2019), pp. 10-20. |
| [40] | A.N. Zhang, H.B. Zhao, J.B. Cheng, M.E. Li, S.L. Li, M. Cao, Y.Z. Wang Chem. Eng. J., 410 (2021), Article 128361. |
| [41] | F. Wang, W. Gu, J. Chen, Y. Wu, M. Zhou, S. Tang, X. Cao, P. Zhang, G. Ji, Nano Res (2021), pp. 3720-3728. |
| [42] | Y. Zhao, L. Hao, X. Zhang, S. Tan, H. Li, J. Zheng, G. Ji, Small Sci, 2 (2021), Article 2100077. |
| [43] | W. Li, J. Shi, Y. Zhao, Q. Huo, Y. Sun, Y. Wu, Y. Tian, Z. Jiang, ACS Sustain. Chem. Eng., 8 (2020), pp. 1831-1839. |
| [44] | P. Liu, S. Gao, Y. Wang, F. Zhou, Y. Huang, W. Huang, N. Chang, Carbon, 170 (2020), pp. 503-516. |
| [45] | H.B. Zhao, Z.B. Fu, H.B. Chen, M.L. Zhong, C.Y. Wang, ACS Appl. Mater. Inter., 8 (2016), pp. 1468-1477. |
| [46] | B.W. Liu, H.B. Zhao, Y.Z. Wang, Adv. Mater. (2021), Article 2107905. |
| [47] | L. Ding, Y. Huang, X. Liu, Z. Xu, S. Li, J. Yan, P. Liu, J. Alloys Compd., 812 (2020), Article 152168. |
| [48] | Y. Shi, L. Yu, K. Li, S. Li, Y. Dong, Y. Zhu, Y. Fu, F. Meng, Compos. Sci. Technol., 197 (2020), Article 108246. |
| [49] | Z. Lou, H. Han, M. Zhou, J. Han, J. Cai, C. Huang, J. Zou, X. Zhou, H. Zhou, Z. Sun, ACS Sustain. Chem. Eng., 6 (2018), pp. 1000-1008. |
| [50] | P. Liu, S. Gao, W. Huang, J. Ren, D. Yu, W. He, Carbon, 159 (2020), pp. 83-93. |
| [51] | J.B. Cheng, Y.Q. Wang, A.N. Zhang, H.B. Zhao, Y.Z. Wang, Carbon, 183 (2021), pp. 205-215. |
| [52] | R.C. Che, C.Y. Zhi, C.Y. Liang, X.G. Zhou, Appl. Phys. Lett., 88 (2006), Article 033105. |
| [53] | B. Zhu, Y. Tian, Y. Wang, L. Mao, F. Gao, G. Wen, L. Liang, K. Zhang, G. Li, Appl. Surf. Sci., 538 (2021), Article 148018. |
| [54] | C. Wang, Z. Jia, S. He, J. Zhou, S. Zhang, M. Tian, B. Wang, G. Wu, J. Mater. Sci. Technol., 108 (2022), pp. 236-243. |
| [55] | Y. Liu, X. Liu, X. E, B. Wang, Z. Jia, Q. Chi, G. Wu, J. Mater. Sci. Technol., 103 (2022), pp. 157-164. |
| [56] | C. Sun, Z. Jia, S. Xu, D. Hu, C. Zhang, G. Wu, J. Mater. Sci. Technol., 113 (2022), pp. 128-137. |
| [57] | B. Zhao, Y. Li, Q. Zeng, B. Fan, L. Wang, R. Zhang, R. Che, J. Mater. Sci. Technol., 107 (2022), pp. 100-110. |
| [58] | L. Wang, B. Wen, X. Bai, C. Liu, H. Yang, ACS Appl. Nano Mater., 2 (2019), pp. 7827-7838. |
| [59] | Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, R. Che, Adv. Mater., 28 (2016), pp. 486-490. |
| [60] | H. Sun, R. Che, X. You, Y. Jiang, Z. Yang, J. Deng, L. Qiu, H. Peng, Adv. Mater., 26 (2014), pp. 8120-8125. |
| [61] | F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang, D. Hui, Z. Zhou, Compos. B Eng., 137 (2018), pp. 260-277. |
| [62] | J. Chen, J. Zheng, F. Wang, Q. Huang, G. Ji, Carbon, 174 (2021), pp. 509-517. |
| [63] | F. Wang, W. Gu, J. Chen, Q. Huang, M. Han, G. Wang, G. Ji, J. Mater. Sci. Technol., 105 (2022), pp. 92-100. |
| [64] | Y. Chen, P. Potschke, J. Pionteck, B. Voit, H. Qi, ACS Appl. Mater. Int., 12 (2020), pp. 22088-22098. |
| [65] | Z. Wu, H.W. Cheng, C. Jin, B. Yang, C. Xu, K. Pei, H. Zhang, Z. Yang, R. Che, Adv. Mater. (2022), Article 2107538. |
| [66] | Z. Wu, K. Pei, L. Xing, X. Yu, W. You, R. Che, Adv. Funct. Mater., 29 (2019), Article 1901448. |
| [67] | H. Zhao, Y. Cheng, Z. Zhang, J. Yu, J. Zheng, M. Zhou, L. Zhou, B. Zhang, G. Ji, Compos. B Eng., 196 (2020), Article 108119. |
| [68] | B. Zhao, B. Fan, Y. Xu, G. Shao, X. Wang, W. Zhao, R. Zhang, ACS Appl. Mater. Inter., 7 (2015), pp. 26217-26225. |
| [69] | Y. Zhang, H. Si, S. Liu, Z. Jiang, J. Zhang, C. Gong, J. Alloys Compd., 850 (2021), Article 156680. |
| [70] | J. Liu, R. Che, H. Chen, F. Zhang, F. Xia, Q. Wu, M. Wang, Small, 8 (2012), pp. 1214-1221. |
| [71] | X. Xu, F. Ran, Z. Fan, Z. Cheng, Z. Xie, T. Lv, Y. Liu, Carbon, 178 (2021), pp. 320-331. |
| [72] | H. Wu, M. Qin, L. Zhang, Compos. B Eng., 182 (2020), Article 107620. |
| [73] | Y.Q. Wang, H.B. Zhao, J.B. Cheng, B.W. Liu, Q. Fu, Y.Z. Wang, Nano-Micro. Lett., 14 (2022), p. 76. |
| [1] | Xiubo Xie, Yukun Wang, Xueqin Sun, Heshan Wang, Ronghai Yu, Wei Du, Hongjing Wu. Optimizing impedance matching by a dual-carbon Co-regulation strategy of Co3O4@rGO/celery stalks derived carbon composites for excellent microwave absorption [J]. J. Mater. Sci. Technol., 2023, 133(0): 1-11. |
| [2] | Shuangshuang Li, XinweiTang , Xu Zhao, Shijie Lu, Jiangtao Luo, Zheyuan Chai, Tiantian Ma, Qianqian Lan, Piming Ma, Weifu Dong, Zicheng Wang, Tianxi Liu. Hierarchical graphene@MXene composite foam modified with flower-shaped FeS for efficient and broadband electromagnetic absorption [J]. J. Mater. Sci. Technol., 2023, 133(0): 238-248. |
| [3] | Yujie Ren, Xin Wang, Jiaxin Ma, Qi Zheng, Lianjun Wang, Wan Jiang. Metal-organic framework-derived carbon-based composites for electromagnetic wave absorption: Dimension design and morphology regulation [J]. J. Mater. Sci. Technol., 2023, 132(0): 223-251. |
| [4] | Zhangtao Shen, Yapei Zu, Yuqiu Chen, Jun Gong, Chao Sun. Microwave absorption performance of porous carbon particles modified by nickel with different morphologies [J]. J. Mater. Sci. Technol., 2023, 137(0): 79-90. |
| [5] | Junxiong Xiao, Xiaosi Qi, Xiu Gong, Qiong Peng, Yanli Chen, Ren Xie, Wei Zhong. Tunable and improved microwave absorption of flower-like core@shell MFe2O4@MoS2 (M = Mn, Ni and Zn) nanocomposites by defect and interface engineering [J]. J. Mater. Sci. Technol., 2023, 139(0): 137-146. |
| [6] | Yupeng Shi, Dan Li, Haoxu Si, Zhiyang Jiang, Mengyuan Li, Chunhong Gong. TiN/BN composite with excellent thermal stability for efficiency microwave absorption in wide temperature spectrum [J]. J. Mater. Sci. Technol., 2022, 130(0): 249-255. |
| [7] | Zhenjiang Li, Hui Lin, Yuxin Xie, Laibin Zhao, Yuying Guo, Tingting Cheng, Hailong Ling, Alan Meng, Shaoxiang Li, Meng Zhang. Monodispersed Co@C nanoparticles anchored on reclaimed carbon black toward high-performance electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 124(0): 182-192. |
| [8] | Bin Li, Fenglong Wang, Kejun Wang, Jing Qiao, Dongmei Xu, Yunfei Yang, Xue Zhang, Longfei Lyu, Wei Liu, Jiurong Liu. Metal sulfides based composites as promising efficient microwave absorption materials: A review [J]. J. Mater. Sci. Technol., 2022, 104(0): 244-268. |
| [9] | Yameng Jiao, Qiang Song, Xuemin Yin, Liyuan Han, Wei Li, Hejun Li. Grow defect-rich bamboo-like carbon nanotubes on carbon black for enhanced microwave absorption properties in X band [J]. J. Mater. Sci. Technol., 2022, 119(0): 200-208. |
| [10] | Meng Zhu, Yuting Lei, Heng Wu, Luo Kong, Hailong Xu, Xuanxuan Yan, Yongjian Xu, Lei Dai. Porous hybrid scaffold strategy for the realization of lightweight, highly efficient microwave absorbing materials [J]. J. Mater. Sci. Technol., 2022, 129(0): 215-222. |
| [11] | Yue-Yi Wang, , Wen-Jin Sun, Kun Dai, Ding-Xiang Yan, Zhong-Ming Li. Highly enhanced microwave absorption for carbon nanotube/barium ferrite composite with ultra-low carbon nanotube loading [J]. J. Mater. Sci. Technol., 2022, 102(0): 115-122. |
| [12] | Yawei Zhang, Shuangshuang Li, Xinwei Tang, Wei Fan, Qianqian Lan, Le Li, Piming Ma, Weifu Dong, Zicheng Wang, Tianxi Liu. Ultralight and ordered lamellar polyimide-based graphene foams with efficient broadband electromagnetic absorption [J]. J. Mater. Sci. Technol., 2022, 102(0): 97-104. |
| [13] | Guohao Dai, Ruixiang Deng, Xiao You, Tao Zhang, Yun Yu, Lixin Song. Entropy-driven phase regulation of high-entropy transition metal oxide and its enhanced high-temperature microwave absorption by in-situ dual phases [J]. J. Mater. Sci. Technol., 2022, 116(0): 11-21. |
| [14] | Fei Wu, Lingyun Wan, Ting Wang, Muhammad Rizwan Tariq, Tariq Shah, Pei Liu, Qiuyu Zhang, Baoliang Zhang. Construction of binary assembled MOF-derived nanocages with dual-band microwave absorbing properties [J]. J. Mater. Sci. Technol., 2022, 117(0): 36-48. |
| [15] | Fuxi Peng, Mingfeng Dai, Zhenyu Wang, Yifan Guo, Zuowan Zhou. Progress in graphene-based magnetic hybrids towards highly efficiency for microwave absorption [J]. J. Mater. Sci. Technol., 2022, 106(0): 147-161. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
